Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(log_2\left(\frac{8x-2^x-12m}{3}\right)=t\)
\(\Rightarrow8x-2^x-12m=3.2^t\)
Ta được hệ: \(\left\{{}\begin{matrix}3t-2^x-x=3m\\8x-2^x-3.2^t=12m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}12t-4.2^x-4x=12m\\8x-2^x-3.2^t=12m\end{matrix}\right.\)
\(\Rightarrow12t-3.2^x-12x+3.2^t=0\)
\(\Leftrightarrow3.2^t+12t=3.2^x+12x\)
Hàm \(f\left(a\right)=3.2^a+12a\) đồng biến trên R nên đẳng thức xảy ra khi và chỉ khi \(x=t\)
\(\Rightarrow3x-2^x-x=3m\)
\(\Leftrightarrow2x-2^x=3m\)
Khảo sát hàm \(f\left(x\right)=2x-2^x\Rightarrow f'\left(x\right)=2-2^x.ln2=0\)
\(\Rightarrow2^x=\frac{2}{ln2}\Rightarrow x=log_2\left(\frac{2}{ln2}\right)=1-log_2\left(ln2\right)\)
Từ BBT ta thấy để pt có đúng 2 nghiệm thực pb
\(\Leftrightarrow3m< f\left(1-log_2\left(ln2\right)\right)\Rightarrow m\le0\) do m nguyên
Có 20 giá trị nguyên của m
Phương trình hoành độ giao điểm của đồ thị và đường thẳng là \(-x+m=\frac{x^2-1}{x}\)
\(\Leftrightarrow2x^2-mx-1=0\) (*) (vì x = 0 không là nghiệm của (*))
Vì ac < 0 nên phương trình (*) luôn có 2 nghiệm phân biệt khác không
Do đó đồ thị và đường thẳng luôn cắt nhau tại hai điểm phân biệt :
\(A\left(x_1;-x_1+m\right);B\left(x_2;-x_2+m\right)\)
\(AB=4\Leftrightarrow\sqrt{\left(x_2-x_1\right)^2+\left(-x_2+m+x_1+m\right)^2}=4\)
\(\Leftrightarrow2\left(x_2-x_1\right)^2=16\)
\(\Leftrightarrow\left(x_2+x_1\right)^2-4x_2x_1=8\)
Áp ụng định lý Viet ta có : \(\begin{cases}x_2+x_1=\frac{m}{2}\\x_2x_1=-\frac{1}{2}\end{cases}\)
\(AB=4\Leftrightarrow\frac{m^2}{4}+2=8\Leftrightarrow m=\pm2\sqrt{6}\)
Vậy \(m=\pm2\sqrt{6}\) là giá trị cần tìm
1) bạn dùng dấu U
điều kiện \(\begin{cases}m\ne0,m>-\frac{1}{4}\\m< 1\end{cases}\)
muons dễ nhìn thì vẽ trục số: 0 -1/4 1 x
=> điều kiện x \(\in\left(-\frac{1}{4};1\right)\backslash\left\{0\right\}\)
1.
Hàm trùng phương có đúng 1 cực trị khi:
TH1: \(a=m=0\)
TH2: \(ab=-m>0\Leftrightarrow m< 0\)
\(\Rightarrow m\le0\)
Đáp án B
2.
\(y'=3\left(x^2+2mx+m^2-1\right)=3\left(x+m+1\right)\left(x+m-1\right)\)
\(y'=0\Rightarrow\left[{}\begin{matrix}x=-m+1\\x=-m-1\end{matrix}\right.\)
Hàm số có 2 cực trị nằm về 2 phía trục hoành
\(\Leftrightarrow y'\left(-m+1\right).y'\left(-m-1\right)< 0\)
\(\Leftrightarrow\left(3m-2\right)\left(3m+2\right)< 0\Rightarrow-\frac{2}{3}< m< \frac{2}{3}\)
\(\Rightarrow a+2b=-\frac{2}{3}+2.\frac{2}{3}=\frac{2}{3}\)
5.
\(y'=1-\frac{4}{\left(x-3\right)^2}=0\Leftrightarrow\left(x-3\right)^2=4\)
\(\Rightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=1< 3\left(l\right)\end{matrix}\right.\)
BBT:
Từ BBT ta có \(y_{min}=y\left(5\right)=7\)
\(\Rightarrow m=7\)
3.
\(y'=-2x^2-6x+m\)
Hàm đã cho nghịch biến trên R khi và chỉ khi \(y'\le0;\forall x\)
\(\Leftrightarrow\Delta'=9+2m\le0\)
\(\Rightarrow m\le-\frac{9}{2}\)
4.
\(y'=x^2-mx-2m-3\)
Hàm đồng biến trên khoảng đã cho khi và chỉ khi \(y'\ge0;\forall x>-2\)
\(\Leftrightarrow x^2-mx-2m-3\ge0\)
\(\Leftrightarrow x^2-3\ge m\left(x+2\right)\Leftrightarrow m\le\frac{x^2-3}{x+2}\)
\(\Leftrightarrow m\le\min\limits_{x>-2}\frac{x^2-3}{x+2}\)
Xét \(g\left(x\right)=\frac{x^2-3}{x+2}\) trên \(\left(-2;+\infty\right)\Rightarrow g'\left(x\right)=\frac{x^2+4x+3}{\left(x+2\right)^2}=0\Rightarrow x=-1\)
\(g\left(-1\right)=-2\Rightarrow m\le-2\)
Phương trình hoành độ giao điểm của (C) và Ox :
\(\frac{mx^2+x+m}{x-1}=0\Leftrightarrow mx^2+x+m=0\left(1\right)\), \(x\ne1\)
Đặt \(f\left(x\right)=mx^2+x+m\)
(C) cắt Ox tại 2 điểm phân biệt có hoành độ dương
\(\Leftrightarrow\left(1\right)\) có 2 nghiệm dương phân biệt khác 1
\(\Leftrightarrow\begin{cases}m\ne0\\\Delta=1-4m^2>0\\f\left(1\right)=1+2m\ne0\end{cases}\) \(\Leftrightarrow\begin{cases}m\ne0\\-\frac{1}{2}< m< \frac{1}{2}\end{cases}\)
Vậy với \(\begin{cases}m\ne0\\-\frac{1}{2}< m< \frac{1}{2}\end{cases}\) thì điều kiện bài toán thỏa mãn