K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2019

Chọn A

* Không gian mẫu là  n ( Ω ) = 6

* Gọi biến cố A: " Các quả cầu cùng màu thì vào chung một hộp”

Bỏ 3 quả cầu vào một hộp, bỏ 3 quả màu xanh vào hộp còn lại có 2 cách

=> n(A) = 2

* Xác suất của biến cố A là 

DD
21 tháng 7 2021

a) Vì số bi trong hộp thứ nhất và hộp thứ hai là độc lập và việc lấy ra số các bi từ hai hộp là độc lập nên hai biến cố A, B là độc lập. 

b) 

- Trên A:

+ Hai quả lấy ra đều màu đỏ: \(P=\frac{C^2_3}{C^2_5}=\frac{3}{10}\).

+ Hai quả lấy ra cùng màu: \(P=\frac{C^2_3+C^2_2}{C^2_5}=\frac{4}{10}\)

+ Hai quả lấy ra khác màu: \(P=1-\frac{4}{10}=\frac{6}{10}\).

- Trên B: 

+ Hai quả lấy ra đều màu đỏ: \(P=\frac{C^2_4}{C^2_{10}}=\frac{2}{15}\).

+ Hai quả lấy ra cùng màu: \(P=\frac{C^2_4+C^2_6}{C^2_{10}}=\frac{7}{15}\)

+ Hai quả lấy ra khác màu: \(P=1-\frac{7}{15}=\frac{8}{15}\).

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

-         Số cách lấy ngẫu nhiên 2 quả cầu: \(n\left( \Omega  \right) = C_9^2 = 36\)

-         Số cách lấy 2 quả khác màu là:

+ 1 quả màu xanh và 1 quả màu vàng: \(C_4^1 \times C_3^1 = 12\)

+ 1 quả màu xanh và 1 quả màu đỏ: \(C_4^1 \times C_2^1 = 8\)

+ 1 quả màu đỏ và 1 quả màu vàng: \(C_2^1 \times C_3^1 = 6\)

=> Tổng số cách lấy ra 2 quả khác màu là: 26 cách

-         Số cách lấy 2 quả khác màu trùng số:

+ 2 quả cùng là số 1: \(C_3^2 = 3\)

+ 2 quả cùng là số 2: \(C_3^2 = 3\)

+ 2 quả cùng là số 3: \(C_2^2 = 1\)

=> Tổng số cách lấy ra 2 quả khác màu trùng số là: 7 cách

=> Số cách lấy ra 2 quả khác màu khác số là: 26 – 7 = 19 (cách)

=> Xác suất để lấy ra 2 quả khác màu khác số là: \(P = \frac{{19}}{{36}}\)

18 tháng 9 2019

Đáp án B

Lấy ngẫu nhiên từ mỗi hộp ra 1 quả cầu có

C 12 1 . C 10 1 = 120 cách

Lấy ngẫu nhiên từ mỗi hộp ra 1 quả cầu có

C 7 1 . C 6 1 = 42 cách

Vậy xác suất cần tính là  P = 42 120 = 7 20

16 tháng 3 2019

Đáp án B

Lấy mỗi hộp 1 quả cầu có:  C 12 1 . C 10 1 = 120 quả cầu.

Gọi A là biến cố: 2 quả cầu lấy ra cùng màu đỏ.

Khi đó:  Ω A = C 7 1 . C 6 1 = 42 .

Do đó xác suất cần tìm là:  P ( A ) = 42 120 = 7 20 .

20 tháng 7 2017

Chọn A

Gọi T là phép thử lấy mỗi hộp ra một quả. Số phần tử của không gian mẫu trong phép thử T

Gọi A là biến cố hai quả lấy ra từ mỗi hộp đều là màu đỏ. Số phần tử của biến cố A là: .

Vậy xác suất của biến cốA .

Số cách chọn hai quả cầu cùng màu là:

\(5\cdot4+3\cdot2=26\left(cách\right)\)

Số quả cầu tất cả là 5+3=8(quả)

Xác suất để chọn hai quả cầu cùng màu là:

\(\dfrac{26}{8\cdot7}=\dfrac{13}{28}\)

18 tháng 5 2017

Tổ hợp - xác suất

23 tháng 4 2018

Kí hiệu

A: "Quả lấy từ hộp thứ nhất màuđỏ" ;

B: "Quả lấy từ hộp thứ hai màuđỏ".

Ta thấy A và B độc lập.

a) Cần tính P(A ∩ B).

Ta có: P(A ∩ B) = P(A). P(B) = 0,24

b) Cần tính xác suất của C   =   ( A   ∩   B )   ∪   ( A   ∩   B )

Do tính xung khắc và độc lập của các biến cố, ta có

P ( C )   =   P ( A ) .   P ( B )   +   P ( A ) .   P ( B )   =   0 , 48

 

c) Cần tính P ( C ) . Ta có P ( C ) = 1 − P(C) = 1 − 0,48 = 0,52