Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tỉ số của học sinh giỏi và khá đối với cả lớp là:
1 - 7/15 = 8/15 (số học sinh cả lớp)
Tỉ số của số học sinh giỏi và số học sinh còn lại là:
1 - 5/8 = 3/8 (số học sinh còn lại)
Tỉ số của học sinh giỏi và học sinh cả lớp là:
3/8 x 8/15 = 1/5 (số học sinh cả lớp)
Số học sinh của cả lớp là:
9 : 1/5 = 45 (học sinh)
Số học sinh trung bình là:
45 x 7/15 = 21 (học sinh)
Số học sinh khá là:
45 - 21 - 9 = 15 (học sinh)
Đáp số: ...........
Số học sinh xếp loại giỏi là:
40 . 40%=16(học sinh)
Số học sinh khá lớp 6A là:
16 . 5/4=20(học sinh)
Số học sinh TB lớp 6A là:
40-16-20=4(học sinh)
Đáp số : 4 học sinh
Chúc bạn học tốt!
Chọn đáp án B.
Số cách chọn 4 học sinh trong đội thanh niên xung kích là C 15 4 = 1365
Số cách chọn 4 học sinh sao cho mỗi khối có ít nhất một học sinh là
Vậy xác suất chọn được 4 học sinh sao cho mỗi khối có ít nhất một học sinh là
Chọn C.
Chọn ngẫu nhiên 6 học sinh trong 15 học sinh có C 15 6 cách ⇒ n Ω = C 16 5 .
Gọi X là biến cố “6 học sinh được chọn có đủ 3 khối” => biến cố đối X ¯ là “6 học sinh được chọn trong một khối hoặc hai khối”. Ta xét các trường hợp sau:
TH1. Chọn 6 học sinh từ một khối. Ta xét các trường hợp sau:
TH2. Chọn 6 học sinh từ hai khối, ta được
· 6 học sinh chọn từ khối 11 và 11 => có C 11 6 - C 6 6 cách
· 6 học sinh chọn từ khối 11 và 12 => có C 9 6 cách
· 6 học sinh chọn từ khối 12 và 10 => có C 10 6 - C 6 6 cách.
Vậy P = 1 - n X ¯ n Ω = 1 - 755 C 15 6 = 850 1001 .
Đáp án C
Phương pháp giải: Sử dụng biến cố đối và các quy tắc đếm cơ bản
Lời giải:
Ta đi làm phần đối của giả thiết, tức là chọn 6 học sinh giỏi chỉ lấy từ một khối hoặc hai khối.
Chọn 6 học sinh giỏi trong 15 học sinh giỏi của 3 khối có C 15 6 = 5005 cách
Số cách chọn 6 học sinh giỏi bằng cách chỉ lấy từ 1 khối 12 là C 6 6 = 1
Chọn 6 học sinh giỏi trong 10 học sinh giỏi của 2 khối 12 và 11 có C 10 6 = 210 cách, tuy nhiên phải trừ đi 1 trường hợp nếu 6 học sinh chỉ ở khối 12 => số cách chọn là 210 – 1 = 2019 cách
Chọn 6 học sinh giỏi trong 11 học sinh giỏi của 2 khối 12 và 10 có C 11 6 = 462 cách, uy nhiên phải trừ đi 1 trường hợp nếu 6 học sinh chỉ ở khối 12 => số cách chọn là 462 – 1 = 461 cách.
Chọn 6 học sinh giỏi trong 9 học sinh giỏi của 2 khối 11 và 10 có C 9 6 = 84 cách
Suy ra số cách chọn thỏa mãn yêu cầu bài toán là 5005 – 209 – 461 – 84 – 1 = 4250 cách