Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(d=ƯCLN\left(2n+1;2n^2-1\right);n\in N\)
Ta có:
\(2n+1\)chia hết cho \(d\Rightarrow n\left(2n+1\right)\) chia hết cho \(d\)
và \(2n^2-1\) chia hết cho \(d\)
nên \(\left(n\left(2n+1\right)-2n^2+1\right)\)chia hết cho \(d\)
\(\Leftrightarrow n+1\)chia hết cho \(d\)
\(\Leftrightarrow2n+2\) chia hết cho \(d\)
\(\Leftrightarrow2n+2-\left(2n+1\right)\)chia hết cho \(d\)
\(\Leftrightarrow1\)chia hết cho \(d\Rightarrow d=1\)
Vậy, phân số \(B=\frac{2n+1}{2n^2-1}\) tối giản với \(n\in N\)
a: Gọi d=UCLN(2n+1;5n+2)
\(\Leftrightarrow10n+5-10n-4⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>UCLN(2n+1;5n+2)=1
hay 2n+1/5n+2 là phân số tối giản
b: Gọi d=UCLN(12n+1;30n+2)
\(\Leftrightarrow5\left(12n+1\right)-2\left(30n+2\right)⋮d\)
\(\Leftrightarrow60n+5-60n-4⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>UCLN(12n+1;30n+2)=1
=>12n+1/30n+2là phân số tối giản
c: Gọi \(d=UCLN\left(2n+1;2n^2-1\right)\)
\(\Leftrightarrow n\left(2n+1\right)-2n^2+1⋮d\)
\(\Leftrightarrow n+1⋮d\)
\(\Leftrightarrow2n+2⋮d\)
\(\Leftrightarrow2n+2-2n-1⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>\(\dfrac{2n+1}{2n^2-1}\) là phân số tối giản
\(\frac{n^2+n+1}{n^4+n^2+1}=\frac{n^2+n+1}{n^4+2n^2+1-n^2}=\frac{n^2+n+1}{\left(n^2+1\right)^2-n^2}\)
\(=\frac{n^2+n+1}{\left(n^2+n+1\right)\left(n^2-n+1\right)}=\frac{1}{n^2-n+1}\)
Vậy \(\frac{n^2+n+1}{n^4+n^2+1}\) không là phân số tối giản với mọi \(n\inℕ^∗\)
Ta có :
\(n^8+n+1=n^8-n^2+n^2+n+1\)
\(=n^2(n^6-1)+n^2+n+1\)
\(=n^2(n^2-1)(n^4+n^2+1)+n^2+n+1\)
\(=n^2(n^2-1)(n^4+2n^2+1-n^2)+n^2+n+1\)
\(=n^2(n^2-1)(n^2+n+1)(n^2-n+1)+n^2+n+1⋮n^2+n+1\)
Mặt khác :
\(n^7+n^2+1=n^7-n+n^2+n+1\)
\(=(n-1)(n^6-1)+n^2+n+1\)
\(=(n-1)(n^2-1)(n^2+n+1)(n^2-n+1)+n^2+n+1⋮n^2+n+1\)
Vậy chúng đều có ước chung \(n^2+n+1\)và \(n^2+n+1>1\)nên phân số đó không tối giản
Hok tốt :>
Em chưa học làm dạng này , em làm thử thôi nhá, sai xin chỉ dạy thêm nha
2 . \(\dfrac{n^7+n^2+1}{n^8+n+1}=\dfrac{n^7-n+n^2+n+1}{n^8-n^2+n^2+n+1}\)
\(=\dfrac{n\left(n^6-1\right)+n^2+n+1}{n^2\left(n^6-1\right)+n^2+n+1}=\dfrac{n\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}\)\(=\dfrac{n\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}\)
\(=\dfrac{\left(n^2+n+1\right)\left[\left(n^4+n\right)\left(n-1\right)\right]}{\left(n^2+n+1\right)\left[\left(n^5+n^2\right)\left(n-1\right)+1\right]}\)
\(=\dfrac{n^5-n^4+n^2-n}{n^6-n^5+n^3-n^2+1}=\dfrac{n^4\left(n-1\right)+n\left(n-1\right)}{n^5\left(n-1\right)+n^2\left(n-1\right)+1}\)
\(=\dfrac{\left(n-1\right)\left(n^4+n\right)}{\left(n-1\right)\left(n^5+n^2\right)+1}\)
Vậy ,với mọi số nguyên dương n thì phân thức trên sẽ không tối giản
Bài 1:
Gọi d=ƯCLN(15n^2+8n+6;30n^2+21n+13)
=>30n^2+21n+13-30n^2-16n-12 chia hết cho d
=>5n+1 chia hết cho d
=>5n chia hết cho d và 1 chia hết cho d
=>d=1
=>P là phân số tối giản
bn sai phần 5n + 1 rùi vì giả dụ n = 7 và d = 3 thì 35 ko chia hết cho 3 mà phải +1 nữa thì = 36 mới chia hết cho 3
a)Nhận xét
\(\dfrac{n^3+1}{n^3-1}=\dfrac{\left(n+1\right)\left(n^2-n+1\right)}{\left(n-1\right)\left(n^2+n+1\right)}=\dfrac{\left(n+1\right)\left[\left(n-0,5\right)^2+0;75\right]}{\left(n-1\right)\left[\left(n+0,5\right)^2+0,75\right]}\)
Áp dụng công thức trên:
\(A=\dfrac{2^3+1}{2^3-1}.\dfrac{3^3+1}{3^3-1}....\dfrac{9^3+1}{9^3-1}\)
\(=\dfrac{\left(2+1\right)\left[\left(2-0,5\right)^2+0,75\right]}{\left(2-1\right)\left[\left(2+0,5\right)^2+0,75\right]}.\dfrac{\left(3+1\right)\left[\left(3-0,5\right)^2+0,75\right]}{\left(3-1\right)\left[\left(3+0,5\right)^2+0,75\right]}...\dfrac{\left(9+1\right)\left[\left(9-0,5\right)^2+0,75\right]}{\left(9-1\right)\left[\left(9+0,5\right)^2+0,75\right]}\)
\(=\dfrac{3\left(1,5^2+0,75\right)}{\left(2,5^2+0,75\right)}.\dfrac{4\left(2,5^2+0,75\right)}{2\left(3,5^2+0,75\right)}...\dfrac{10\left(8,5^2+0,75\right)}{8\left(9,5^2+0,75\right)}\)
\(=\dfrac{3.4....10}{1.2.....8}.\dfrac{1,5^2+0,75}{9,5^2+0,75}\)
\(=\dfrac{9.10}{2}.\dfrac{3}{91}\)
\(=\dfrac{3}{2}.\dfrac{90}{91}< \dfrac{3}{2}\)
\(\Rightarrowđpcm\)
b) Làm tương tự
-Ta có: \(n^4+n^2+1=\left(n^4+n^3+n^2\right)+\left(-n^3-n^2-n\right)+\left(n^2+n+1\right)=n^2\left(n^2+n+1\right)-n\left(n^2+n+1\right)+\left(n^2+n+1\right)=\left(n^2+n+1\right)\left(n^2-n+1\right)\)
\(\Rightarrow\dfrac{n^2+n+1}{n^4+n^2+1}=\dfrac{n^2+n+1}{\left(n^2+n+1\right)\left(n^2-n+1\right)}=\dfrac{1}{n^2-n+1}\).
-Vậy \(\dfrac{n^2+n+1}{n^4+n^2+1}\left(n\in Nsao\right)\) không là phân số tối giản.