Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D = | x+2| + | 3x-1| + | x-4| = | x+2| + | x-4| + |3x-1| = | x+2+4-x| + | 3x-1| = |6| + |3x-1|
dấu " = " xảy ra : (x+2)(4-x) lớn hơn hoặc bằng 0 và 6 lớn hơn hoặc bằng 0
suy ra x= 6 hoặc 2 bé hơn hoặc bằng x bé hơn hoặc bằng 4
suy ra MinD = 2
(Min là giá trị nhỏ nhất nha)
k cho tui nha
A = I x + 2 I + I x - 3 I
GTNN là 1 nha bạn
\(A=\left|x+2\right|+\left|x-3\right|=\left|x+2\right|+\left|3-x\right|\ge\left|x+2+3-x\right|=5\)
Dấu ''='' xảy ra khi \(\left(x+2\right)\left(3-x\right)\ge0\Leftrightarrow-2\le x\le3\)
Vậy GTNN của A bằng 5 tại \(-2\le x\le3\)
GTNN của B là 17,5
x=3/4 ; y = 3/2
nha bạn
Vì ( 4x - 3 )2 ≥ 0 ∀ x ; | 5y + 7,5 | ≥ 0 ∀ y
=> B = ( 4x - 3 )2 + | 5y + 7,5 | + 17,5 ≥ 0 + 0 + 17,5 = 17,5
=> B nhận giá trị nhỏ nhận là 17,5
<=> x = \(\frac{3}{4}\) ; y = -1,5
\(B=\left(4x-3\right)^2+\left|5y+7,5\right|+17,5\ge17,5\)
Dấu ''='' xảy ra khi x = 3/4 ; y = -3/2
Vậy GTNN của B bằng 17,5 tại x = 3/4 ; y = -3/2
Vì ( 4x - 3 )2 ≥ 0 ∀ x ; | 5y + 7,5 | ≥ 0 ∀ y
=> B = ( 4x - 3 )2 + | 5y + 7,5 | + 17,5 ≥ 0 + 0 + 17,5 = 17,5
=> B nhận giá trị nhỏ nhận là 17,5
<=> x = \(\frac{3}{4}\) ; y = -1,5
Ta có : \(\left|x-2\right|+\left|y-5\right|+10\ge10\)
\(\Rightarrow\frac{-15}{\left|x-2\right|+\left|y-5\right|+10}\ge-\frac{15}{10}=-\frac{3}{2}\)
\(\Rightarrow B=3-\frac{15}{\left|x-2\right|+\left|y-5\right|+10}\ge3-\frac{3}{2}=\frac{3}{2}\)
Dấu ''='' xảy ra khi x = 2 ; y = 5
Vậy GTNN của B bằng 3/2 tại x = 2 ; y = 5
\(D=\left|x+3\right|+\left|x-2\right|+7=\left|x+3\right|+\left|2-x\right|+7\ge\left|x+3+2-x\right|+7=12\)
Dấu ''='' xảy ra khi \(\left(x+3\right)\left(2-x\right)\ge0\Leftrightarrow-3\le x\le2\)
Vậy GTNN của D bằng 12 tại -3 =< x =< 2
\(13^{\left(x-2\right)\left(2x-5\right)}=1=13^0\)
\(\Rightarrow\left(x-2\right)\left(2x-5\right)=0\Leftrightarrow x=2;x=\frac{5}{2}\)
Ta có với mọi \(a\in Z\)thì \(a^0=1\)
\(\Rightarrow13^{\left(x-2\right)\left(2x-5\right)}=13^0=1\)
\(\Rightarrow\left(x-2\right)\left(2x-5\right)=0\)
\(\Rightarrow x-2=0\)hoặc \(2x-5=0\)
\(TH1:\)\(x-2=0\)
\(\Rightarrow x=2\)
\(TH2:\)\(2x-5=0\)
\(\Rightarrow2x=5\)
\(\Rightarrow x=\frac{5}{2}\)
Vậy \(x\in\left\{2;\frac{5}{2}\right\}\)
\(C=\left(2x-5\right)^2+17\ge17\)
Dấu ''='' xảy ra khi x = 5/2
Vậy GTNN của C bằng 17 tại x = 5/2
Ta có \(\left(2x-5\right)^2\ge0\forall x\)
=> \(C=\left(2x-5\right)^2+17\ge17\)
=> Min C = 17
Dấu "=" xảy ra <=> 2x - 5 = 0
<=> x = 2,5
Vậy Min C = 17 <=> x = 2,5