Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:(3x-y)\(^2\)\(\ge\) 0 \(\forall\) x
|x+y|\(\ge\) 0 \(\forall\)i x,y
=>(3x-y)\(^2\)+|x+y|\(\ge\)0 \(\forall\) x,y
=>(3x-y)\(^2\)+|x+y|-3\(\ge\)-3 \(\forall\)x,y
Vậy GTNN của biểu thức B là -3
Dấu "=" xảy ra khi (3x-y)\(^2\)=|x+y|=0
Với (3x-y)\(^2\)=0=>3x-y=0=>3x=y=>x=y=0
Với |x+y|=0=>x+y=0=>x=x=0
Vậy biểu thức B đạt GTNN là -3 khi x=y=0
Ta có:(2x\(^2\)+3) luôn lớn hơn hoặc bằng 0 với mọi x
=>(2x\(^2\)+3)\(^2\) -7 luôn lớn hơn hoặc bằng -7 với mọi x
Vậy GTNN của biểu thức C là 7
Dấu "=" xảy ra khi (2x\(^2\)+3)\(^2\)=0
=>2x\(^2\)+3 =0
2x\(^2\) =-3
x\(^2\) =\(\frac{-3}{2}\)
x =\(\sqrt{\left(\frac{-3}{2}\right)^2}\)
Vậy GTNN của biểu thức C là -7 khi x=\(\sqrt{\left(\frac{-3}{2}\right)^2}\)
2.|2x - 3| - x + 1 = |x - 5|
2.|2x - 3| = |x - 5| + x - 1
\(\left|2x-3\right|=\frac{\left|x-5\right|+x-1}{2}\)
\(\Rightarrow\orbr{\begin{cases}2x-3=\frac{-\left|x-5\right|-x+1}{2}\\2x-3=\frac{\left|x-5\right|+x-1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}4x-6=-\left|x-5\right|-x+1\\4x-6=\left|x-5\right|+x-1\end{cases}}\Rightarrow\orbr{\begin{cases}5x-7=-\left|x-5\right|\\3x-5=\left|x-5\right|\end{cases}}\)
Xét trường hợp thứ nhất , ta có :
\(\left|x-5\right|=-5x+7\)
\(\Rightarrow\orbr{\begin{cases}x-5=-5x+7\\x-5=5x-7\end{cases}}\Leftrightarrow\orbr{\begin{cases}6x=12\\2=4x\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{1}{2}\end{cases}}\)
Xét trường hợp thứ 2 , ta có :
\(3x-5=\left|x-5\right|\)
\(\Rightarrow\orbr{\begin{cases}x-5=3x-5\\x-5=-3x+5\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=0\\4x=10\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{2}\end{cases}}\)
\(P=\frac{\left(\frac{10203}{125}:\frac{24}{5}-\frac{901}{200}\right)^2+125\cdot\frac{3}{4}}{\left\{\left[\left(\frac{11}{25}\right)^2+\frac{353}{100}\right]^2-\left(\frac{11}{4}\right)^2\right\}:\frac{13}{25}}\)
\(P=\frac{\left(\frac{10203}{125}\cdot\frac{5}{24}-\frac{901}{100}\right)^2+\frac{375}{4}}{\left[\left(\frac{121}{625}+\frac{353}{100}\right)^2-\frac{121}{16}\right]\cdot\frac{25}{13}}\)
\(P=\frac{\left(\frac{3401}{200}-\frac{1802}{200}\right)^2+\frac{18750}{200}}{\left[\left(\frac{484}{2500}+\frac{8825}{2500}\right)^2-\frac{121}{16}\right]\cdot\frac{25}{13}}\)
\(P=\frac{\frac{1599}{200}^2+\frac{18750}{200}}{\left(\frac{9309}{2500}^2-\frac{121}{16}\right)\cdot\frac{25}{13}}\)
\(P=\frac{\frac{2556801}{40000}+\frac{3750000}{40000}}{\left(\frac{86657481}{6250000}-\frac{47265625}{6250000}\right)\cdot\frac{25}{13}}\)
\(P=\frac{\frac{6306801}{40000}}{\frac{39391856}{6250000}\cdot\frac{25}{13}}\)
\(P=\frac{\frac{6306801}{40000}}{\frac{2461991}{203125}}\)
a) Vì x< 0 nên x= \(-\sqrt{7}\)
b) x-2 =\(\sqrt{2}\)hoặc x-2 = -\(\sqrt{2}\)
suy ra x= \(\sqrt{2}\)+2 hoặc x= \(-\sqrt{2}\)+2
c)
x+\(\sqrt{3}\) =\(\sqrt{5}\)hoặc x+\(\sqrt{3}\) = -\(\sqrt{5}\)
suy ra x= \(\sqrt{5}-\sqrt{3}\)hoặc x= \(-\sqrt{5}-\sqrt{3}\)
Các bạn tự kết luận nhé
C= ( 2x2+3)2-7
C= 4x4+9-7
C= 4x4+2
Các bạn ơi giải hộ mình bài đi !!