Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
những ai thích xem minecraft và blockman go thì hãy xem kênh youtube của mik kênh mik là M.ichibi các bn nhớ sud và chia sẻ cho nhiều người khác nhé
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+......+\frac{3}{43.46}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{43}-\frac{1}{46}\)
\(=1-\frac{1}{46}< 1\)
Vậy \(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+......+\frac{3}{43.46}< 1\)
a, Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2017^2}< \frac{1}{2016.2017}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2017^2}>\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2016.2017}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}=1-\frac{1}{2017}< 1\)Vậy...
b, Đặt A = \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}\)
\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)
\(A=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
Đặt B = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};.....;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)
Thay B vào A ta được:
\(A< \frac{1}{4}\left(1+1\right)=\frac{1}{4}.2=\frac{1}{2}\)
Vậy....
c, Ta có: \(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};....;\frac{1}{9^2}>\frac{1}{9.10}\)
\(\Rightarrow A>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)(1)
Lại có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};....;\frac{1}{9^2}< \frac{1}{8.9}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)(2)
Từ (1) và (2) suy ra \(\frac{2}{5}< A< \frac{8}{9}\)(đpcm)
d, chắc là đề sai
e, giống câu a
a)Ta có: \(\frac{3}{1.4}=\frac{4-1}{1.4}=1-\frac{1}{4}\)
\(\frac{3}{4.7}=\frac{7-4}{4.7}=\frac{1}{4}-\frac{1}{7}\)
... . . . .
\(\frac{3}{n\left(n+3\right)}=\frac{1}{n}-\frac{1}{n+3}\)
\(\Leftrightarrow S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+3}< 1^{\left(đpcm\right)}\)
b) Ta có: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
Suy ra \(\frac{2}{5}< S\) (1)
Ta lại có: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)
Từ đó suy ra S < 8/9
Từ (1) và (2) suy ra đpcm
nhanh lên nhé các bạn trả lời nhanh và đúng thì mình tích cho
1/1*4+1/4*7+1/7*10+...+1/2010*2013=A
3A=3/1*4+3/4/*7+3/7*10+...+3/2010*2013
3A=1-1/4+1/4-1/7+1/7-1/10+...+1/2010-1/2013
3A=1-1/2013<1
Suy ra : A <1/3
Nho k cho minh voi nhe
a) \(\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\)
\(=\frac{5.2^{30}.3^{18}-2^2.2^{27}.3^{20}}{5.2^9.2^{19}.3^{19}-7.2^{29}.3^{18}}\)
\(=\frac{2^{29}.3^{18}\left(5.2-3^2\right)}{2^{18}.3^{18}\left(5.3-7.2\right)}\)
\(=\frac{2.1}{1}=2\)
a ) 1 3.4 + 1 4.5 + ... + 1 19.20 = 1 3 − 1 20 = 17 60 < 1 2
b ) 3 1.4 + 3 4.7 + 3 7.10 + ... + 3 97.100 = 1 − 1 100 < 1
c ) T a c ó : 1 2 2 + 1 3 2 + 1 4 2 + ... + 1 9 2 > 1 2.3 + 1 3.4 + 1 4.5 + ... + 1 9.10 = 2 5
1 2 2 + 1 3 2 + 1 4 2 + ... + 1 9 2 < 1 1.2 + 1 2.3 + 1 3.4 + 1 8.9 = 8 9