Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=4\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=4a^2+4b^2+4c^2-4ab-4bc-4ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=4a^2+4b^2+4c^2-4ab-4bc-4ac\)
\(\Leftrightarrow0=2a^2+2b^2+2c^2-2ab-2bc-2ac\)
\(\Leftrightarrow0=a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\)
\(\Leftrightarrow0=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
Mà \(\left\{\begin{matrix}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)
\(\Rightarrow a=b=c\) ( đpcm )
Với mọi a,b,c ta đều có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0.\)Dấu "=" chỉ xảy ra khi a = b = c.
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)(1)
a) \(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)nên \(a^2+b^2+c^2=ab+bc+ac\Leftrightarrow a=b=c\)đpcm (a)
b) \(\left(1\right)\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2ab+2ba+2ac=\left(a+b+c\right)^2\)
nên \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)^2\Leftrightarrow a=b=c\)đpcm (b)
c) Từ \(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3\left(ab+bc+ac\right)\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
nên \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\Leftrightarrow a=b=c\)đpcm (c).
a) \(a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng với mọi a,b,c)
b)\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)
Câu a :
Ta có :
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
Dấu = xảy ra khi \(a=b\)
Câu b :
\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ( đúng )
Dấu = xảy ra khi \(a=b=c\)
\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
Chuyển vế và CM tương tự
Thân heo vừa béo lại vừa ù
Bảy nổi ba chìm với nước lu
Chết đuối quẫy chân không ai cứu
Đứa nào mà cứu, đứa ấy ngu
a, a2+b2+c2 >= ab+bc+ca
<=>a2+b2+c2-ab-bc-ca >= 0
<=>2(a2+b2+c2-ab-bc-ca) >= 0
<=>2a2+2b2+2c2-2ab-2bc-2ca >= 0
<=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2) >= 0
<=>(a-b)2+(b-c)2+(c-a)2 >= 0 (luôn đúng)
Dấu "=" xảy ra chỉ khi và khi \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)
Vậy...
b, a2+b2+1 >= ab+a+b
<=>a2+b2+1-ab-a-b >= 0
<=>2(a2+b2+1-ab-a-b) >= 0
<=>2a2+2b2+2-2ab-2a-2b >= 0
<=>(a2-2ab+b2)+(a2-2a+1)+(b2-2b+1) >= 0
<=>(a-b)2+(a-1)2+(b-1)2 >= 0 (luôn đúng)
Dấu "=" xảy ra chỉ khi và khi \(\hept{\begin{cases}a-b=0\\a-1=0\\b-1=0\end{cases}\Leftrightarrow a=b=1}\)
Vậy...
c, a2+b2+c2+3 >= 2(a+b+c)
<=>a2+b2+c2+3-2a-2b-2c >= 0
<=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1) >= 0
<=>(a-1)2+(b-1)2+(c-1)2 >= 0 (luôn đúng)
Dấu "=" xảy ra chỉ khi và khi \(\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}\Leftrightarrow a=b=c=1}\)
Vậy...
d, a2+b2+c2 >= 2(ab+bc-ca)
<=>a2+b2+c2-2ab-2bc+2ca >= 0
<=>(a-b-c)2 >= 0 (luôn đúng)
Dấu "=" xảy ra khi a=b=c
Vậy...
e,ta có: \(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\Leftrightarrow\frac{a^2+b^2}{2}-\left(\frac{a+b}{2}\right)^2\ge0\)
\(\Leftrightarrow\frac{2\left(a^2+b^2\right)}{4}-\frac{a^2+2ab+b^2}{4}\ge0\)
\(\Leftrightarrow\frac{2a^2+2b^2-a^2-2ab-b^2}{4}\ge0\)
\(\Leftrightarrow\frac{a^2-2ab+b^2}{4}\ge0\Leftrightarrow\left(\frac{a-b}{2}\right)^2\ge0\) (luôn đúng) (1)
Lại có: \(\left(\frac{a+b}{2}\right)^2\ge ab\Leftrightarrow\frac{a^2+2ab+b^2}{4}-\frac{4ab}{4}\ge0\)
\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{4}\ge0\Leftrightarrow\left(\frac{a-b}{2}\right)^2\ge0\) (luôn đúng) (2)
Từ (1) và (2) => \(ab\le\left(\frac{a+b}{2}\right)^2\le\frac{a^2+b^2}{2}\)
Dấu "=" xảy ra khi a = b
P/s : bài này khá khó nên mình thử thôi !
Không mất tính tổng quát , ta giả sử : \(a\ge b\ge c\)
Đặt \(M=ab+bc+ca-12\left(a^3+b^3+c^3\right)\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(N=a\left(b+c\right)-12\left[a^3+\left(b+c\right)^3\right]\left[a^2\left(b+c\right)^2\right]\)
Ta có : \(ab+ac+bc\ge a\left(b+c\right)\)hay \(a^2b^2+b^2c^2+c^2a^2\le a^2\left(b+c\right)^2\)
\(\Rightarrow M\ge N\)
Tiếp , ta sẽ chứng minh \(N\ge0\)
\(\Leftrightarrow a\left(b+c\right)-12\left[a^3+\left(b+c\right)^3\right]\left[a^2\left(b+c\right)^2\right]\ge0\)
\(\Leftrightarrow a\left(b+c\right)\left\{1-12a\left(b+c\right)\left[a^3+\left(b+c\right)^3\right]\right\}\ge0\)
\(\Leftrightarrow1-12a\left(b+c\right)\left[a^3\left(b+c\right)^3\right]\ge0\)
\(\Leftrightarrow1-12a\left(b+c\right)\left[\left(a+b+c\right)^3-3a\left(b+c\right)\left(a+b+c\right)\right]\ge0\)
\(\Leftrightarrow1-12a\left(b+c\right)\left[1-3a\left(b+c\right)\right]\ge0\left(1\right)\)
Đặt x = a ; y = b + c ta có : \(x+y=1\Rightarrow xy\le\frac{1}{4}\)
Theo bất đẳng thức AM - GM , ta có :
\(12xy\left(1-3xy\right)\le\frac{1}{4}.12xy\left(4-12xy\right)\le\frac{1}{4}\left(\frac{12xy+4-12xy}{2}\right)^2=1\)
=> Bất đẳng thức ( 1 ) luôn đúng
\(\Rightarrow N\ge0\)
Vậy \(M\ge0\)\(\Leftrightarrow ab+bc+ca\ge12\left(a^3+b^3+c^3\right)\left(a^2b^2+b^2c^2+c^2a^2\right)\)
Đẳng thức xảy ra với bộ \(\left(\frac{3+\sqrt{3}}{6};\frac{3-\sqrt{3}}{6};0\right)\)và các hoán vị của chúng .
WLOG: \(c=min\left\{a,b,c\right\}\)
Let \(p=a+b+c;ab+bc+ca=q;abc=r\) so p = 1; \(r\ge0\)and \(3\ge q\ge ab\left(\text{vì }c\ge0\right)\)
Need: \(q\ge12\left(p^3-3pq+3r\right)\left(q^2-2pr\right)\)
Have: \(VP=12\left(1-3q+3r\right)\left(q^2-2r\right)=\frac{2}{3}.\left(1-3q+3r\right).18\left(q^2-2r\right)\)
\(\le\frac{1}{6}\left[1-3q+3r+18\left(q^2-2r\right)\right]=\frac{1}{6}\left[18q^2-3q+1-33r\right]\)
\(\le\frac{1}{6}\left(18q^2-3q+1\right)=3q^2-\frac{1}{2}q+\frac{1}{6}\)
Hence, we need to prove: \(q\ge3q^2-\frac{1}{2}q+\frac{1}{6}\)
\(\Leftrightarrow3q^2-\frac{3}{2}q+\frac{1}{6}\le0\Leftrightarrow\frac{1}{6}\le q\le\frac{1}{3}\)
Which it is obvious because:
\(q=ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
\(q-\frac{1}{6}=ab+bc+ca-\frac{1}{6}=ab+c-\frac{1}{6}+c\left(a+b-1\right)\)\(=ab-\frac{1}{6}+1-\left(a+b\right)-c\left[1-\left(a+b\right)\right]\)
\(=ab-\frac{1}{6}+\left[1-\left(a+b\right)\right]\left(1-c\right)\ge0\)
Triển khai vế trái ra, xong chuyển hết sang vế phải ta dc: (a-b)^2+(b-c)^2+(c-a)^2=0
suy ra a-b=0, b-c=0, c-a=0. Vậy a=b=c
Triển khai vế trái ra, xong chuyển hết sang vế phải ta dc: (a-b)^2+(b-c)^2+(c-a)^2=0
suy ra a-b=0, b-c=0, c-a=0. Vậy a=b=c
hok thuộc hằng đẳng thức chưa?