K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
VD
1
LD
2
NV
1
22 tháng 10 2016
Xét 3 số tự nhiên liên tiếp: 2n - 1; 2n; 2n + 1, trong 3 số này có 1 số chia hết cho 3
Do (2;3)=1 nên (2n;3)=1
=> trong 2 số 2n - 1; 2n + 1 có 1 số chia hết cho 3
=> 2n - 1 và 2n + 1 không thể đồng thời là 2 số nguyên tố (đpcm)
TN
1
3 tháng 12 2018
Đặt \(ƯC\left(3n^2+3n+4;n^2+n+1\right)=d\)
\(\Rightarrow3n^2+3n+4⋮d,n^2+n+1⋮d\)
\(\Rightarrow3n^2+3n+4-3\left(n^2+n+1\right)⋮d\)
\(\Rightarrow3n^2+3n+4-3n^2-3n-3⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy với \(n\inℕ\) thì \(3n^2+3n+4\) và \(n^2+n+1\) nguyên tố cùng nhau.
Xột số A = (2n – 1)2n(2n + 1)
A là tích của 3 số tự nhiên liờn tiệp nên A ⋮ 3
Mặt khỏc 2n – 1 là số nguyên tố ( theo giả thiết )
2n không chia hết cho 3
Vậy 2n + 1 phải chia hết cho 3 ⇒ 2n + 1 là hợp số.