Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) a2+b2-2ab=(a-b)2>=0
b) \(\frac{a^2+b^2}{2}\)\(\ge\)ab <=> \(\frac{a^2+b^2}{2}\)-ab\(\ge\)0 <=> \(\frac{\left(a-b\right)^2}{2}\)\(\ge\)0 (ĐPCM)
c) a2+2a < (a+1)2=a2+2a+1 (ĐPCM)
\(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)
\(\Leftrightarrow a^2+b^2+c^2+\frac{3}{4}+a+b+c\ge0\)
\(\Leftrightarrow\left(a^2+a+\frac{1}{4}\right)+\left(b^2+b+\frac{1}{4}\right)+\left(c^2+c+\frac{1}{4}\right)\ge0\)
\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2+\left(b+\frac{1}{2}\right)^2+\left(c+\frac{1}{2}\right)^2\ge0\) (luôn đúng)
Vậy \(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)
b ) chuyển vế tương tự
Áp dụng liên tiếp BĐT \(\frac{\left(x+y\right)^2}{2}\le x^2+y^2\Leftrightarrow\left(x-y\right)^2\ge0\left(true\right)\)
\(\left(\frac{a+b}{2}\right)^4=\left(\frac{\frac{\left(a+b\right)^2}{2}}{2}\right)^2\le\left(\frac{a^2+b^2}{2}\right)^2=\left(\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\right)\le\frac{a^4+b^4}{2}\)
Dấu "=" xảy ra tại a=b
Vậy..................
Ta co \(a^4+b^4+2\ge2a^2b^2+2\)\(=2\left(a^2b^2+1\right)\ge2\cdot2ab\)\(=4ab\)
Dau "=" xay ra khi va chi khi a=b
\(\frac{a^2+b^2}{2}\ge ab\)(1)
<=> \(a^2+b^2\ge2ab\)
<=> \(a^2+b^2-2ab\ge0\)
<=> \(\left(a-b\right)^2\ge0\)đúng với a, b bất kì
Vậy (1) đúng với mọi a, b bất kì
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(a^2+b^2=\frac{a^2}{1}+\frac{b^2}{1}\ge\frac{\left(a+b\right)^2}{1+1}=\frac{1^2}{2}=\frac{1}{2}\left(đpcm\right)\)
Đẳng thức xảy ra <=> a = b
úi xin lỗi bài kia thiếu ._. Đẳng thức xảy ra <=> a=b=1/2 nhé
2. Ta có : a3 + b3 + ab = ( a + b )( a2 - ab + b2 ) + ab
= a2 - ab + b2 + ac = a2 + b2 ( do a+b=1 )
Sử dụng kết quả ở bài trước ta có đpcm
Đẳng thức xảy ra <=> a=b=1/2
Áp dụng bđt Cauchy Schwarz dạng Engel ta có:
\(\frac{a^2+b^2+c^2}{3}=\)(\(\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\)).\(\frac{1}{3}\ge\)\(\frac{\left(a+b+c\right)^2}{1+1+1}.\frac{1}{3}=\)\(\left(\frac{a+b+c}{3}\right)^2\)(đpcm)
Dấu "=" xảy ra khi a = b = c
\(\left(a^2+b^2\right)\ge2ab\)
\(\left(a^2+1\right)\ge2a\)
Do đó: \(\left(a^2+b^2\right)\left(a^2+1\right)\ge4a^2b\)