Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1:
B=3+3^2+...+3^60=(3+3^2+3^3)+...+(3^58+3^59+3^60)=3(1+3+3^2)+...+3^58(1+3+3^2)=3*13+...+3^58*13=13(3+...+3^58) (CHIA HẾT CHO 13)
A=5+5^2+...+5^10=(5+5^2)+(5^3+5^4)+...+(5^9+5^10)=5(1+5)+...+5^9(1+5)=5*6+...+5^9*6=(5+...+5^9)*6(CHIA HẾT CHO 6)
B2: bạn kéo xuống dưới nãy mk thấy có ng làm r
b3: (2x+1)(y-5)=168
Ta có bảng sau:
2x+1 | 1 | 2 | 4 | 7 | 8 | 12 | 14 | 21 | 24 | 42 | 84 | 168 |
2x | 0 | 1 | 3 | 6 | 7 | 11 | 13 | 20 | 23 | 41 | 83 | 167 |
x | 0 | 3 | 10 | |||||||||
y-5 | 168 | 24 | 8 | |||||||||
y | 173 | 29 | 13 |
(mấy ô mk để trống là loại vì x,y là số tự nhiên)
\(5^3\left(5^2-5+1\right)=5^3.\left(25-5+1\right)=5^3.21\)chia hết cho 7 vì 21 chia hết cho 7
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{1009^2}\)
Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{4};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{1009^2}< \dfrac{1}{1008.1009}\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{1009^2}< \dfrac{1}{4}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{1008.1009}\)\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{1008}-\dfrac{1}{1009}\)
\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{1009}\)
\(\Rightarrow A< \dfrac{3}{4}-\dfrac{1}{1009}\)
\(\Rightarrow A< \dfrac{3}{4}\left(đpcm\right)\)
Mình chỉ biết làm câu dưới thôi à
Giải
Nhân cả 2 vế với 5 ta có
5A = 5^2 + 5^3 + 5^4 +........+ 5^2014
=> 5A - A = ( 5^2 + 5^3 + 5^4 +...+ 5^2014 ) - ( 5 + 5^2 + 5^3 + .... + 5^2013 )
4A = 5^2014 - 5
=> 4A + 5 = 5^2014 - 5 + 5
=> 4A + 5 = 5^2014
4A + 5 = ( 5^1009 )^2
Vì 5^1009 thuộc N => ( 5^1009 )^2 là 1 số chính phương
Vậy ......
nhớ k cho mình nha
1) 55 - 54 + 53 = 53 . 52 - 53 . 5 - 53
= 53 . ( 52 - 5 + 1 )
= 53 . ( 25 - 5 - 1 )
= 53 . 21
= 53 . 3 . 7 chia hết cho 7
Vậy chứng minh 55 - 54 + 53 chia hết cho7
2) 76 + 75 - 74 = 74 . 72 + 74 . 7 - 74
= 74 . ( 72 + 7 - 1 )
= 74 . ( 49 + 7 - 1 )
= 74 . 55
= 74 . 5 .11 chia hết cho 11
Vậy chứng minh 76 + 75 - 74 chia hết cho 11
Tích mình nha !!!!!!!!!!!!!!!!!
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
C = \(\frac{5}{4}+\frac{5}{4^2}+\frac{5}{4^3}+...+\frac{5}{4^{99}}\)
= \(5\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{99}}\right)\)
Đặt A = \(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{99}}\)
4A = \(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{99}}\)
4A - A = \(\left(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{99}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{99}}\right)\)
3A = \(1-\frac{1}{4^{99}}< 1\)
=> A < \(\frac{1}{3}\) (1)
Thay (1) vào C ta được:
\(C< 5\cdot\frac{1}{3}=\frac{5}{3}\)(đpcm)
Ta có:\(\frac{5}{4}\)< \(\frac{5}{3}\)Mà C = \(\frac{5}{4}+\frac{5}{4^2}+...+\frac{5}{4^{99}}\)<\(\frac{5}{4}\)
\(\Rightarrow\)C < \(\frac{5}{3}\)
Câu 1:
\(\Leftrightarrow6x-18-8x-4-2x+8=4-3\left(2x+1\right)+5\left(2x-1\right)\)
=>-4x-14=4-6x-3+10x-5
=>-4x-14=4x-4
=>-8x=10
hay x=-5/4
Sơ đồ con đường
Lời giải chi tiết
Xét 5 3 . 5 2 − 5 + 1 = 5 3 .21
Áp dụng tính chất chia hết của một tích:
21 ⋮ 7 ⇒ 5 3 .21 ⋮ 7 ⇒ 5 3 . 5 2 − 5 + 1 ⋮ 7 ⇒ 5 5 − 5 4 + 5 3 ⋮ 7