Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left|a\right|\left|b-1\right|=\left|a\left(b-1\right)\right|=\left|ab-a\right|< 1.10=10\)
Lại có :\(\left|ab-a\right|+\left|a-c\right|\ge\left|\left(ab-a\right)+\left(a-c\right)\right|=\left|ab-c\right|\)
\(\Rightarrow\left|ab-c\right|\le\left|ab-a\right|+\left|a-c\right|< 10+10=20\) hay \(\left|ab-c\right|< 20\)
Ta có :
\(\left|a\right|\left|b-1\right|=\left|a\left(b-1\right)\right|=\left|ab-a\right|< 1.10=10\)
Ta lại có :
\(\left|ab-a\right|+\left|a-c\right|\ge\left|\left(ab-a\right)+\left(a-c\right)\right|=\left|ab-c\right|\)
\(\Rightarrow\left|ab-c\right|\le\left|ab-a\right|+\left|a-c\right|< 10+10=20\Leftrightarrow\left|ab-c\right|< 20\)
\(\RightarrowĐPCM\)
Với a=7; b=-5; c=12 => |a+b| =2 <5 và |b+c|=7 <12 (TM) Nhưng |a+c| = 19 >17. => đề có vấn đề. Có lẽ thiếu a,b,c >0
Có \(\hept{\begin{cases}\left|a\right|+\left|b\right|\ge0\\\left|a-b\right|\ge0\end{cases}}\)
\(\left|a\right|+\left|b\right|\ge\left|a-b\right|\)
\(\Leftrightarrow\left(\left|a\right|+\left|b\right|\right)^2\ge\left|a-b\right|^2\)
\(\Leftrightarrow a^2+2.\left|a\right|.\left|b\right|+b^2\ge a^2-2ab+b^2\)
\(\Leftrightarrow2.\left|a\right|.\left|b\right|\ge2ab\)( luôn đúng )
\(\Rightarrow\left|a\right|+\left|b\right|\ge\left|a-b\right|\)
đpcm
Gải sử..
\(1)\)\(\left|a\right|+\left|b\right|\ge\left|a-b\right|\)
\(\Leftrightarrow\)\(\left(\left|a\right|+\left|b\right|\right)^2\ge\left|a-b\right|^2\)
Có \(\left|a-b\right|^2=\left(a-b\right)^2\)
\(\Leftrightarrow\)\(a^2+2\left|ab\right|+b^2\ge a^2-2ab+b^2\)
\(\Leftrightarrow\)\(\left|ab\right|\ge-ab\) ( đúng )
Dấu "=" xảy ra \(\Leftrightarrow\)\(ab< 0\)
\(2)\)\(\left|a\right|+\left|b\right|+\left|c\right|\ge\left|a+b+c\right|\)
\(\Leftrightarrow\)\(\left(\left|a\right|+\left|b\right|+\left|c\right|\right)^2\ge\left|a+b+c\right|^2\)
Có \(\left|a+b+c\right|^2=\left(a+b+c\right)^2\)
\(\Leftrightarrow\)\(a^2+b^2+c^2+2\left|ab\right|+2\left|bc\right|+2\left|ca\right|\ge a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Leftrightarrow\)\(\left|ab\right|+\left|bc\right|+\left|ca\right|\ge ab+bc+ca\) ( đúng )
Dấu "=" xảy ra khi a, b, c cùng dấu ( cùng dương hoặc cùng âm )
\(3)\) Sai đề thì phải. Giả sử \(a=3;b=0\) thì \(\left|a+b\right|< \left|1+ab\right|\)
\(\Leftrightarrow\)\(\left|3+0\right|< \left|1+3.0\right|\)\(\Leftrightarrow\)\(3< 1\) ( ??? )
...
Với \(a< b< c< d\) thì
\(A=\left|x-a\right|+\left|x-b\right|+\left|x-c\right|+\left|x-d\right|< \left|x-a\right|+\left|x-a\right|+\left|x-a\right|+\left|x-a\right|=4\left|x-a\right|\)
cặp cạnh tương ứng vuông góc là mỗi cạnh của góc này vuông góc với mỗi cạnh của góc kia ( mỗi cạnh tương ứng đấy và vuông góc thành từng đôi 1,1 cạnh của góc này vuông góc với 1 cạnh của góc kia và 2 cạnh còn lại của 2 góc cũng thế).còn cặp cạnh tương ứng song song cũng như tương ứng vuông góc đều phải là mỗi cạnh của góc này song song với 1 cạnh của góc kia.chúc may mắn nha!