K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 cặp cạnh tương ứng vuông góc là mỗi cạnh của góc này vuông góc với mỗi cạnh của góc kia ( mỗi cạnh tương ứng đấy và vuông góc thành từng đôi 1,1 cạnh của góc này vuông góc với 1 cạnh của góc kia và 2 cạnh còn lại của 2 góc cũng thế).còn cặp cạnh tương ứng song song cũng như tương ứng vuông góc đều phải là mỗi cạnh của góc này song song với 1 cạnh của góc kia.chúc may mắn nha!

17 tháng 10 2017

Ta có : \(\left|a\right|\left|b-1\right|=\left|a\left(b-1\right)\right|=\left|ab-a\right|< 1.10=10\)

Lại có :\(\left|ab-a\right|+\left|a-c\right|\ge\left|\left(ab-a\right)+\left(a-c\right)\right|=\left|ab-c\right|\)

\(\Rightarrow\left|ab-c\right|\le\left|ab-a\right|+\left|a-c\right|< 10+10=20\) hay \(\left|ab-c\right|< 20\)

19 tháng 10 2017

Ta có :

\(\left|a\right|\left|b-1\right|=\left|a\left(b-1\right)\right|=\left|ab-a\right|< 1.10=10\)

Ta lại có :

\(\left|ab-a\right|+\left|a-c\right|\ge\left|\left(ab-a\right)+\left(a-c\right)\right|=\left|ab-c\right|\)

\(\Rightarrow\left|ab-c\right|\le\left|ab-a\right|+\left|a-c\right|< 10+10=20\Leftrightarrow\left|ab-c\right|< 20\)

\(\RightarrowĐPCM\)

4 tháng 9 2018

Với a=7; b=-5; c=12 => |a+b| =2 <5 và |b+c|=7 <12 (TM) Nhưng |a+c| = 19 >17. => đề có vấn đề. Có lẽ thiếu a,b,c >0

10 tháng 12 2018

Có \(\hept{\begin{cases}\left|a\right|+\left|b\right|\ge0\\\left|a-b\right|\ge0\end{cases}}\)

\(\left|a\right|+\left|b\right|\ge\left|a-b\right|\)

\(\Leftrightarrow\left(\left|a\right|+\left|b\right|\right)^2\ge\left|a-b\right|^2\)

\(\Leftrightarrow a^2+2.\left|a\right|.\left|b\right|+b^2\ge a^2-2ab+b^2\)

\(\Leftrightarrow2.\left|a\right|.\left|b\right|\ge2ab\)( luôn đúng )

\(\Rightarrow\left|a\right|+\left|b\right|\ge\left|a-b\right|\)

                             đpcm

Gải sử.. 

\(1)\)\(\left|a\right|+\left|b\right|\ge\left|a-b\right|\)

\(\Leftrightarrow\)\(\left(\left|a\right|+\left|b\right|\right)^2\ge\left|a-b\right|^2\)

Có \(\left|a-b\right|^2=\left(a-b\right)^2\)

\(\Leftrightarrow\)\(a^2+2\left|ab\right|+b^2\ge a^2-2ab+b^2\)

\(\Leftrightarrow\)\(\left|ab\right|\ge-ab\) ( đúng ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(ab< 0\)

\(2)\)\(\left|a\right|+\left|b\right|+\left|c\right|\ge\left|a+b+c\right|\)

\(\Leftrightarrow\)\(\left(\left|a\right|+\left|b\right|+\left|c\right|\right)^2\ge\left|a+b+c\right|^2\)

Có \(\left|a+b+c\right|^2=\left(a+b+c\right)^2\)

\(\Leftrightarrow\)\(a^2+b^2+c^2+2\left|ab\right|+2\left|bc\right|+2\left|ca\right|\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow\)\(\left|ab\right|+\left|bc\right|+\left|ca\right|\ge ab+bc+ca\) ( đúng ) 

Dấu "=" xảy ra khi a, b, c cùng dấu ( cùng dương hoặc cùng âm ) 

\(3)\) Sai đề thì phải. Giả sử \(a=3;b=0\) thì \(\left|a+b\right|< \left|1+ab\right|\)

\(\Leftrightarrow\)\(\left|3+0\right|< \left|1+3.0\right|\)\(\Leftrightarrow\)\(3< 1\) ( ??? ) 

... 

22 tháng 4 2018

Câu hỏi của Mai Chi - Toán lớp 7 - Học toán với OnlineMath

2 tháng 1 2018

Với \(a< b< c< d\) thì

\(A=\left|x-a\right|+\left|x-b\right|+\left|x-c\right|+\left|x-d\right|< \left|x-a\right|+\left|x-a\right|+\left|x-a\right|+\left|x-a\right|=4\left|x-a\right|\)