\(Cho\left(x+y+z\right)\left(xy+yz+xz\right)=xyz\)

\(CMR:x^{20...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2017

Ta có:

\(\left(x+y+z\right)\left(xy+yz+zx\right)=xyz\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow x=-y;y=-z;z=-x\)

Với \(x=-y\)

\(\Rightarrow x^{2017}+y^{2017}+z^{2017}=z^{2017}=\left(x+y+z\right)^{2017}\)

Tương tự cho 2 trường hợp còn lại

\(x+y+z=0\)

\(\Leftrightarrow\left(x+y+z\right)^2=0\)

\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)

\(\Leftrightarrow x^2+y^2+z^2=0\)

\(\Leftrightarrow x=y=z=0\)

\(\Leftrightarrow Q=-1+\left(-1\right)+\left(-1\right)=-3\)

27 tháng 10 2020

(x+y+z)(xy+yz+zxx)=xyz

<=>(x+y+z)(xy+yz+zx)-xyz=0

<=>3(x+y)(y+z)(z+x)=0

<=>(x+y)(y+z)(z+x)=0

<=>x=-y;y=-z;z=-x

x=-y  => (-y)^2017+y^2017+z^2017=z^2017=(-y+y+z)^2017

tương tự 2 trường hợp còn lại ^_^

8 tháng 12 2017

2b)\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

<=> \(\dfrac{ab+bc+ca}{abc}=\dfrac{1}{a+b+c}\)

<=> (ab+bc+ca)(a+b+c)=abc

<=> (ab+bc+ca)(a+b+c)-abc=0

<=> (a+b)(b+c)(c+a) = 0

<=> a+b=0 hoặc b+c=0 hoặc c+a=0

<=> a=-b hoặc b=-c hoặc c = -a

sau đó thay vào cái cần c/m

8 tháng 12 2017

bài 1 nhá

22 tháng 12 2017

Em tham khảo tại đây nhé.

Câu hỏi của Phạm Minh Tuấn - Toán lớp 8 - Học toán với OnlineMath

23 tháng 12 2017

Còn bài số 2 thì sao cô??

26 tháng 10 2017

 ta có (x+y+z).(xy+yz+zx) - xyz = 0

<=> (x+y).(y+z).(z+x) = 0 
=> vế trái phải có 1 nhân tử bằng 0 ,chẳng hạn x + y = 0 => x = -y 
=> x^2013 = -y^2013 
=> x^2013 + y^2013 + z^2013 = - y^2013 + y^2013 + z^2013 + = z^2013 = ( x +y + z )^2013 

21 tháng 11 2017

Bạn kia làm đúng rồi

19 tháng 11 2017

Từ giả thiết , ta có :

( x + y + z)( xy + yz + xz ) = xyz

x( xy + yz + xz) + y( xy + yz + xz ) + z( xy + yz + xz ) - xyz = 0

x2y + xyz + x2z + xy2 + y2z + xyz + xyz + yz2 + xz2 - xyz = 0

x2y + x2z + xy2 + y2z + yz2 + xz2 + 2xyz = 0

xy( x + y) + xz( x + z) + yz( y + z) + 2xyz = 0

xy( x + y + z) + xz( x + y + z) + yz( y + z) = 0

( x + y + z)x( y + z) + yz( y + z) = 0

( y + z)( x2 + xy + xz + yz ) = 0

( y + z)[ x( x + y ) + z( x + y) ] = 0

( y + z)( y + x )( x + z) = 0

Suy ra :

* x + y = 0 --> x = - y . Thay vào đẳng thức cần chứng minh , ta có

( - y)2013 + y2013 + z2013 = ( - y + y + z)2013

Khi đó , ta có : z2013 = z2013 , luôn đúng

* Tương tự , thử với các trường hợp khác : y = - z ; x = - z

Vậy , đảng thức được chứng mình

19 tháng 11 2017

Ta có (x+y+z)(xy+yz+xz)=xyz

<=>\((x+y+z)(\frac{xyz}{z}+\frac{xyz}{y}+\frac{xyz}{x})=xyz \)

<=>(x+y+z)(\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=1 \)

<=>\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z} \)

<=>\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0 \)

<=>\(\frac{x+y}{xy}+\frac{x+y}{z(x+y+z)} \)

<=>\((x+y)(\frac{1}{xy}+\frac{1}{z(x+y+z)}) \)

<=>\((x+y)(\frac{xz+yz+z^2+xy}{xyz(x+y+z)} \)

<=>\((x+y)(y+z)(x+z)(\frac{1}{xyz(x+y+z)} )\)

=>x=-y

hoặc y=-z

hoặc x=-z

Thay vào Pt => đpcm