K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2019

ĐKXĐ:\(x\ne-3;x\ne3\)

\(A=\frac{5}{x+3}-\frac{2}{3-x}-\frac{3x^2-2x-9}{x^2-9}\)

\(=\frac{5}{x+3}+\frac{2}{x-3}-\frac{3x^2-2x-9}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{5\left(x-3\right)+2\left(x+3\right)-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{-3x^2+9x}{\left(x-3\right)\left(x+3\right)}=\frac{-3x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=-\frac{3x}{x+3}\)

b

\(\left|x-2\right|=1\Rightarrow x-2=1\left(h\right)x-2=-1\Rightarrow x=3;x=1\)

Tại \(x=3\) thì \(A=-\frac{3\cdot3}{3+3}=-\frac{9}{6}=-\frac{3}{2}\)

Tại \(x=1\) thì \(A=-1\cdot\frac{3}{1+3}=-\frac{3}{4}\)

c

Để A nguyên thì \(\frac{3x}{x+3}\) nguyên

\(\Rightarrow3x⋮x+3\)

\(\Rightarrow3\left(x+3\right)-9⋮x+3\)

\(\Rightarrow9⋮x+3\)

\(\Rightarrow x+3\in\left\{1;3;9;-1;-3;-9\right\}\)

\(\Rightarrow x\in\left\{-2;0;6;-4;-6;-12\right\}\)

2 tháng 12 2021

\(A=\frac{5}{x+3}-\frac{2}{3-x}-\frac{3x^2-2x-9}{x^2-9}\)

a) ĐKXĐ: \(\hept{\begin{cases}x+3\ne0\\3-x\ne0\\x^2-9\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x\ne3\\x\ne3;x\ne-3\end{cases}}}\)

Vậy ĐKXĐ: x khác -3; x khác 3 ( b vào tcn của mìnk để thấy chi tiết)

Rút gọn:

\(A=\frac{5}{x+3}-\frac{2}{3-x}-\frac{3x^2-2x-9}{x^2-9}\)

\(\Leftrightarrow A=\frac{5}{x+3}+\frac{2}{x-3}-\frac{3x^2-2x-9}{\left(x-3\right)\left(x+3\right)}\) MTC: (x-3)(x+3)

\(\Leftrightarrow A=\frac{5\left(x-3\right)+2\left(x+3\right)-\left(3x^2-2x-9\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{5x-15+2x+6-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{9x-3x^2}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{3x\left(3-x\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{-3x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-3x}{x+3}\)

Vậy A=-3x/x+3 với x khác 3 và x khác -3

b) |x-2|=1

Bỏ dấu gt tuyệt đối ta có 2 TH: (đối chiếu đkxđ)

* x-2=1=> x=1+2=>x=3 (o t/m)

*x-2=-1=>x=-1+2=>x=1 (tm)

Thay x=1 vào phân thức A rút gọn ta có:

\(A=\frac{-3x}{x+3}=\frac{-3.1}{1+3}=\frac{-3}{4}\)

Vậy A=-3/4 khi x=1

c) Để A có gt nguyên => A thuộc Z

=> \(A=\frac{-3x}{x+3}\in Z\)

Ta có:  -3x chia hết x+3

=> -3(x-3)-9 chia hết x+3

=> -9 chia hết cho x+3

=>  x+3 thược Ư(-9)={1;-1;9;-9;3;-3)

Lập bảng thay vào hoặc o cần cx được 

x+31-19-93-3
x-2(tm)-4(tm)6(tm)-12(tm)0(tm)-6(tm)

Vậy...


 

17 tháng 3 2020

a) \(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-5x}{x^2-1}\right)\cdot\frac{x-3}{x}\left(x\ne\pm1;x\ne0\right)\)

\(\Leftrightarrow A=\left[\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-5x}{\left(x-1\right)\left(x+1\right)}\right]\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-5x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{x\left(x-1\right)\left(x-3\right)}{\left(x-1\right)\left(x+1\right)x}=\frac{x-3}{x+1}\)

Vậy \(A=\frac{x-3}{x+1}\left(x\ne\pm1;x\ne0\right)\)

b) \(A=\frac{x-3}{x+1}\left(x\ne\pm1;x\ne0\right)\)

Để A nhận giá trị nguyên thì x-3 chia hết chi x+1

=> (x+1)-4 chia hết chi x+1

=> 4 chia hết cho x+1

x nguyên => x+1 nguyên => x+1 thuộc Ư (4)={-4;-2;-1;1;2;4}
Ta có bảng

x+1-4-2-1124
x-5-3-2013
ĐCĐKtmtmtmktmktmtm

Vậy x={-5;-3;-2;3} thì A đạt giá trị nguyên

c) I3x-1I=5

\(\Rightarrow\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=6\\3x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=\frac{-4}{3}\end{cases}}}\)

Đên đây thay vào rồi tính nhé

16 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne\pm1\\x\ne0\end{cases}}\)

\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-5x}{x^2-1}\right)\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{\left(x+1\right)^2-\left(x-1\right)^2+x^2-5x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{x^2+2x+1-x^2+2x-1+x^2-5x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{\left(x^2-x\right)\left(x-3\right)}{x\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow A=\frac{x-3}{x+1}\)

b) Để \(A\inℤ\)

\(\Leftrightarrow x-3⋮x+1\)

\(\Leftrightarrow x+1-4⋮x+1\)

\(\Leftrightarrow4⋮x+1\)

\(\Leftrightarrow x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Leftrightarrow x\in\left\{0;-2;-3;1;3;-5\right\}\)

Mà \(x\ne0;x\ne1\)

\(\Leftrightarrow x\in\left\{-2;-3;3;-5\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{-2;-3;3;-5\right\}\)

c) Khi \(\left|3x-1\right|=5\)

\(\Leftrightarrow\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x=6\\3x=-4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{4}{3}\end{cases}}\)

Vì khi x = 2 hoặc x = -4/3 thì x không thuộc tập hợp các giá trị làm cho A nguyên

Vậy khi |3x - 1| = 5 thì để cho A nguyên \(\Leftrightarrow x\in\varnothing\)

4 tháng 12 2018

a, DKXD: \(x\ne\pm3\)

\(A=\left(\frac{x}{x+3}+\frac{x-1}{x-3}+\frac{2x^2+x-3}{9-x^2}\right):\frac{-2}{x-3}\)

\(=\left(\frac{x\left(x+3\right)+\left(x-1\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{-2x^2-x+3}{x^2-9}\right):\frac{-2}{x-3}\)

\(=\left(\frac{2x^2+5x-3}{x^2-9}+\frac{-2x^2-x+3}{x^2-9}\right):\frac{-2}{x-3}\)

\(=\frac{4x}{x^2-9}:\frac{-2}{x-3}=\frac{4x}{\left(x-3\right)\left(x+3\right)}\cdot\frac{x-3}{-2}=\frac{4x}{-2\left(x+3\right)}=\frac{-2x}{x+3}\)

b, \(x^2-2x-3=0\Leftrightarrow x^2-3x+x-3=0\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}}\)

Thay x=-1 =>\(A=\frac{-2.\left(-1\right)}{-1+3}=1\)

thay x=3 =>\(A=\frac{-2.3}{3+3}=-1\)

c, De \(A\in Z\Leftrightarrow x+3\in U\left(-2\right)=\left\{1;-1;2;-2\right\}\)

<=>x thuoc {-2;-4;-1;-5}

4 tháng 12 2018

ĐK: \(x\ne\pm3\)

\(A=\left(\frac{x}{x+3}+\frac{x-1}{x-3}+\frac{2x^2+x-3}{9-x^2}\right):\frac{-2}{x-3}\)

\(=\left(\frac{x\left(x-3\right)+\left(x+3\right)\left(x-1\right)}{\left(x+3\right)\left(x-3\right)}+\frac{-2x^2-x+3}{x^2-9}\right).\frac{x-3}{-2}\)

\(=\left(\frac{x^2-3x+x^2+2x-3}{\left(x-3\right)\left(x+3\right)}+\frac{-2x^2-x+3}{\left(x-3\right)\left(x+3\right)}\right).\frac{x-3}{-2}\)

\(=\frac{-2x}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{-2}=\frac{x}{x+3}\)

b, \(x^2-2x-3=0\Rightarrow x\left(x-3\right)+\left(x-3\right)=0\Rightarrow\left(x-3\right)\left(x+1\right)=0\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

x = 3 không thỏa mãn ĐKXĐ

Với x = -1 (thỏa mãn ĐKXĐ) thì \(A=\frac{x}{x+3}=\frac{-1}{-1+3}=-\frac{1}{2}\)

c, \(A\in Z\Rightarrow\frac{x}{x+3}\in Z\Rightarrow x⋮\left(x+3\right)\)

\(\Rightarrow\left(x+3\right)-3⋮\left(x+3\right)\Rightarrow-3⋮\left(x+3\right)\Rightarrow x+3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\)

\(\Rightarrow x\in\left\{-6;-4;-2;0\right\}\) (thỏa mãn điều kiện)

1 tháng 3 2020

a) Ta thấy x=-2 thỏa mãn ĐKXĐ của B.

Thay x=-2 và B ta có :

\(B=\frac{2\cdot\left(-2\right)+1}{\left(-2\right)^2-1}=\frac{-3}{3}=-1\)

b) Rút gọn : 

\(A=\frac{3x+1}{x^2-1}-\frac{x}{x-1}\)

\(=\frac{3x+1-x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{-x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)

Xấu nhỉ ??

7 tháng 12 2021

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

14 tháng 8 2018

khó quá tui ko biết làm..

k cho tui nha

thanks