K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2017

Đáp án C.

Ta có:

G T ⇔ 5 x + 2 y + x + 2 y − 3 − x − 2 y = 5 x y − 1 − 3 1 − x y + x y − 1.

Xét hàm số

f t = 5 t + t − 3 − t ⇒ f t = 5 t ln 5 + 1 + 3 − t ln 3 > 0   ∀ t ∈ ℝ

Do đó hàm số đồng biến trên ℝ  suy ra f x + 2 y = f x y − 1 ⇔ x + 2 y = x y − 1

⇔ x = 2 y + 1 y − 1 ⇒ T = 2 y + 1 y − 1 + y . Do x > 0 ⇒ y > 1  

Ta có:  T = 2 + y + 3 y − 1 = 3 + y − 1 + 3 y − 1 ≥ 3 + 2 3 .

27 tháng 3 2019

Đáp án B.

Từ giả thiết, suy ra 5 x + 2 y + 1 3 x y - 1 + x + 1 = 5 x y - 1 + 1 3 x + 2 y + x y - 2 y  

⇔ 5 x + 2 y - 1 3 x + 2 y + x + 2 y = 5 x y - 1 - 1 3 x y - 1 + ( x y - 1 )  (1)

Xét hàm số f ( t ) = 5 t - 1 3 t + t  trên ℝ .

Đạo hàm f ' ( t ) = 5 t . ln 5 + ln 3 3 t + 1 > 0 , ∀ t ∈ ℝ ⇒ hàm số f (t) luôn đồng biến trên  ℝ .

Suy ra  1 ⇔ f ( x + 2 y ) = f ( x y - 1 ) ⇔ x + 2 y = x y - 1 ⇔ x + 1 = y ( x - 2 )

y = x + 1 x - 2

Do y > 0  nên x + 1 x - 2 > 0 ⇔ x > 2 x < - 1  . Mà x > 0 nên x > 2.

Từ đó T = x + y = x + x + 1 x - 2 . Xét hàm số g ( x ) = x + x + 1 x - 2  trên 2 ; + ∞ .

Đạo hàm g ' ( x ) = 1 - 3 x - 2 2 > 0 , g ' ( x ) = 0 ⇔ ( x - 2 ) 2 = 3  

⇔ x = 2 + 3   ( t m ) x = 2 - 3   ( L ) . Lập bảng biến thiên của hàm số trên 2 ; + ∞ , ta thấy m i n   g ( x ) = g ( 2 + 3 ) = 3 + 2 3 .

Vậy T m i n = 3 + 2 3  khi x = 2 + 3  và y = 1 + 3 .

23 tháng 10 2019

Đáp án D

19 tháng 3 2021

Toán lớp 0 ?????  \(\text{ 🤔 }\text{ 🤔 }\text{ 🤔 }\text{ 😅 }\text{ 😅 }\text{ 😅 }\)

19 tháng 5 2019

17 tháng 4 2017

Đáp án C

Suy ra f(t) đồng biến trên TXĐ và pt f(t) = 21 chỉ có 1 nghiệm duy nhất

Ta thấy t = 10 là 1 nghiệm của pt nên t = 10 là nghiệm duy nhất của pt

⇒ 11 − 2 x − y = 10 ⇒ y = 1 − 2 x ⇒ P = 16 x 2 ( 1 − 2 x ) − 2 x ( 3 − 6 x + 2 ) − 1 + 2 x + 5 = − 32 x 3 + 28 x 2 − 8 x + 4 P ' = − 96 x 2 + 56 x − 8 P ' = 0 ⇔ x = 1 4 x = 1 3 P ( 0 ) = 4 , P ( 1 3 ) = 88 27 , P ( 1 4 ) = 13 4 , P ( 1 2 ) = 3 ⇒ m = 13 4 , M = 4 ⇒ M + 4 m = 17

23 tháng 7 2019

Suy ra f(t) đồng biến trên TXĐ và pt f ( t ) = 21  chỉ có 1 nghiệm duy nhất

Ta thấy t = 10 là 1 nghiệm của pt nên t = 10 là nghiệm duy nhất của pt

⇒ 11 - 2 x - y = 10 ⇒ y = 1 - 2 x ⇒ P = 16 x 2 1 - 2 x - 2 x 3 - 6 x + 2 - 1 + 2 x + 5 = - 32 x 3 + 28 x 2 - 8 x + 4 P ' = - 96 x 2 + 56 x - 8 P ' = 0 ⇔ [ x = 1 4 x = 1 3 P 0 = 4 , P 1 3 = 88 27 ,   P 1 4 = 13 4 , P 1 2 = 3 ⇒ m = 13 4 ,   M = 4 ⇒ M + 4 m = 17

 

15 tháng 9 2017

Đáp án D

Phương pháp giải:

Sử dụng phương pháp hàm đặc trưng để từ giả thiết suy ra mối liên hệ giữa hai biến, sau đó sử dụng phương pháp thể và khảo sát hàm số tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức

7/  Em sửa lại đề ạ 

Cho hai số thực dương a, b thỏa mãn a+b=4ab

Chứng minh rằng  \(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}\ge\frac{1}{2}\)

Đổi biến \(\left(a,b\right)\rightarrow\left(\frac{1}{x},\frac{1}{y}\right)\)

Từ giả thiết => x+y=4

Ta có: BĐT cần CM tương đương với:

\(\frac{\frac{1}{x}}{\frac{4}{y^2}+1}+\frac{\frac{1}{y}}{\frac{4}{x^2}+1}\ge\frac{1}{2}\)\(\Leftrightarrow\frac{y^2}{x\left(4+y^2\right)}+\frac{x^2}{y\left(4+x^2\right)}\ge\frac{1}{2}\left(1\right)\)

Áp dụng BĐT Schwarz, ta có:
\(\frac{x^2}{y\left(4+x^2\right)}\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)+xy^2+x^2y}=\frac{16}{16+xy^2+x^2y}\)

Ta chỉ cần chứng minh:

\(xy^2+x^2y\le16\Leftrightarrow xy^2+x^2y\le\frac{1}{4}\left(x+y\right)^3\)

\(\Leftrightarrow xy^2+x^2y\le x^3+y^3\)(luôn đúng)

Do đó (1) đúng. BĐT được chứng minh. Dấu "=" xảy ra khi x=y=2⇔a=b=\(\frac{1}{2}\)

6. (chuyên Hòa Bình)

Cho các số dương x, y, z thỏa mãn: xy+zx+4yz=32

Tìm giá trị nhỏ nhất của\(P=x^2+16y^2+16z^2\)

Áp dụng bất đẳng thức Cauchy cho  ba số dương  x,y,z ta có

\(\hept{\begin{cases}8y^2+\frac{1}{2}x^2\ge2\sqrt{8y^2.\frac{1}{2}x^2}=4xy\\8z^2+\frac{1}{2}x^2\ge2\sqrt{8z^2.\frac{1}{2}x^2}=4xz\\8y^2+8z^2\ge2\sqrt{8y^2.8z^2}=16yz\end{cases}}\)

Cộng từng vế của ba bđt trên ta có

\(P\ge4\left(xy+xz+4yz\right)=4.32=128\)

6 tháng 2 2019

Đáp án C

Phương pháp:

- Sử dụng tính đơn điệu của hàm số để giải phương trình, từ đó đánh giá giá trị lớn nhất của biểu thức.

Cách giải:

 

<=>  

 

 

  (2)

Đặt  

=> f(t) đồng biến trên (0;+∞) 

<=>

<=>

Khi đó, 

vì 

Vậy Pmax = 1 khi và chỉ khi 

13 tháng 9 2019

Đáp án C

Phương pháp giải:

- Sử dụng tính đơn điệu của hàm số để giải phương trình, từ đó đánh giá giá trị lớn nhất của biểu thức.

Lời giải:

log 3 x + y x 2 + y 2 + x y + 2 =  x ( x - 3 ) + y ( y - 3 ) + x y (1)

(2)

Đặt

 

=> f(t) đồng biến trên (0;+∞)

Khi đó, 

vì 

Vậy Pmax = 1 khi  và chỉ khi