K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

Mk đg cần gấp giúp mk với nha mn :)))

8 tháng 8 2019

1. x O x' y y'

Giải: a) Ta có: \(\widehat{xOy}+\widehat{yOx'}=180^0\) (kề bù)

=> \(\widehat{yOx'}=180^0-\widehat{xOy}=180^0-75^0=105^0\)

Ta lại có: \(\widehat{xOy}=\widehat{x'Oy'}\) (đối đỉnh)

Mà \(\widehat{xOy}=75^0\) => \(\widehat{x'Oy'}=75^0\)

 \(\widehat{yOx'}=\widehat{xOy'}\) (đối đỉnh)

Mà \(\widehat{yOx'}=105^0\) => \(\widehat{xOy'}=105^0\)

  

8 tháng 8 2019

1b) Ta có: \(\widehat{xOy}+\widehat{x'Oy}=180^0\) (kề bù)

mà \(\widehat{x'Oy}-\widehat{xOy}=30^0\)

=> \(2.\widehat{x'Oy}=210^0\)

=> \(\widehat{x'Oy}=210^0:2=105^0\) => \(\widehat{x'Oy}=\widehat{xOy'}=105^0\) (đối đỉnh)

          => \(\widehat{xOy}=180^0-105^0=75^0\) => \(\widehat{xOy}=\widehat{x'Oy'}=75^0\) (đối đỉnh)

2.  O x y x' y' m m'

Giải: a) Ta có: \(\widehat{xOm}=\widehat{x'Om'}\) (đối đỉnh)

          \(\widehat{mOy}=\widehat{m'Oy'}\) (đối đỉnh)

Mà \(\widehat{xOm}=\widehat{mOy}\) (gt)

=> \(\widehat{x'Om'}=\widehat{m'Oy'}\) 

Ta lại có: \(\widehat{xOy}=\widehat{x'Oy'}\) (đối đỉnh)

Mà \(\widehat{xOm}=\widehat{mOy}=\frac{1}{2}.\widehat{xOy}\) (vì  Om là tia p/giác)

=> \(\widehat{x'Om'}=\widehat{m'Oy'}=\frac{1}{2}.\widehat{xOy}\) 

=> Om' nằm giữa Ox' và Oy'

=> Om' là tia p/giác của góc x'Oy'

b) Tự viết

Bài 1: Cho góc bẹt xOy. Trên cùng một nửa mặt phẳng có bờ chứa tia xy, vẽ các tia Om và On sao cho xOm bằng yOn<90(độ). Gọi Oz là tia phân giác của góc mOn. Chứng minh rằng Oz vuông góc với xy.Bài 2: Cho góc bẹt xOy. Trên cùng một nửa mặt phẳng có bờ chứa tia xy, vẽ các tia Om và On vuông góc với nhau. vẽ các tia Oz và Ot sao cho Ox là tia phân giác của góc mOz và Oy là tia phân giác của góc nOt. Chứng...
Đọc tiếp

Bài 1: Cho góc bẹt xOy. Trên cùng một nửa mặt phẳng có bờ chứa tia xy, vẽ các tia Om và On sao cho xOm bằng yOn<90(độ). Gọi Oz là tia phân giác của góc mOn. Chứng minh rằng Oz vuông góc với xy.

Bài 2: Cho góc bẹt xOy. Trên cùng một nửa mặt phẳng có bờ chứa tia xy, vẽ các tia Om và On vuông góc với nhau. vẽ các tia Oz và Ot sao cho Ox là tia phân giác của góc mOz và Oy là tia phân giác của góc nOt. Chứng minh rằng Oz vuông góc với Ot.

Bài 3: Cho góc xOy = 120 (độ). ở phía ngoài của góc vẽ hai tia Oc và Od sao cho Oc vuông góc với Ox và Od vuông góc với Oy. Gọi Om và On lần lượt là tia phân giác của góc xOy và cOd. Vẽ tia Oy' sao cho Ox là tia phân giác của mOy'
  a. Chứng minh rằng Oy và Oy' là hai tia đối nhau.
  b. Tính góc y'On
  c. Chứng minh rằng 2 góc mOy' và nOy là hai tia đối đỉnh.
 

Mong các bạn giúp mk nha :>>>>>>

0
17 tháng 6 2019

120 y x m y' m d c O

a) Ta có: \(\widehat{xOy}=120^o\)

có Om là tia phân giác 

=> \(\widehat{mOy}=\widehat{mOx}=120^o:2=60^o\)

Oy' là tia đối tia Oy

=> \(\widehat{yOy'}=180^o\)

=> \(\widehat{xOy'}=\widehat{yOy'}-\widehat{yOx}=180^o-120^o=60^o\)

=> \(\widehat{xOy'}=\widehat{xOm}=60^o\)

Mặt khác Ox nằm giữa hai tia Om, Oy'

=> Õx là phân giác góc y'Om

b) Ta có: Od nằm phóa ngoài góc xOy

Oy' nằm phía ngoài góc xOy

Mà \(\widehat{xOy'}=60^o< 90^o=\widehat{xOd}\)

=> Oy' nằm giữa hai tia Ox, Od

c) \(\widehat{mOc}=\widehat{mOy}+\widehat{yOc}=60^o+90^o=150^o\)

d) Ta có: On là phân giác góc dOc

mà \(\widehat{dOc}=360^o-\widehat{xOy}-\widehat{xOd}-\widehat{yOc}=60^o\)

=>\(\widehat{dOn}=\widehat{nOc}=60^o:2=30^o\)

=> \(\widehat{mOn}=\widehat{mOc}+\widehat{cOn}=150^O+30^O=180^O\)

10 tháng 8 2016

trả lời hộ mik đi m.n...huhu

10 tháng 8 2016

Thế mà có 2 tia Ox ak. Đề có vấn đề bạn ạ