Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S là tập con của F trong các trường hợp sau:
TH1: S là tập rỗng, tức là pt x2 - 2x + m = 0 vô nghiệm => delta' = 1 - m < 0 => m > 1
TH2: S có 1 nghiệm kép < 0 => delta' = 1 - m = 0 và nghiệm kép -b'/a = 1 < 0. Điều này không xảy ra
TH3: S có 2 nghiệm đều < 0 => Tổng 2 nghiệm cũng < 0. Mà tổng 2 nghiệm = -b/a = 1 là số dương => Điều này cũng ko bao giờ xảy ra.
Vậy m > 1 thì S là rỗng và khi đó S là tập con của F.
*x2+bx+c=0
\(\Delta=b^2-4c=b^2-4.\left(2b-4\right)=b^2-8b+16=\left(b-4\right)^2\)=>\(\sqrt{\Delta}=\left|b-4\right|\)
Với (b-4)2=0 =>b=4 =>c=4
PT có 1 nghiệm kép: \(x_1=x_2=-2\)
Với\(\Delta=\) (b-4)2>0,PT có 2 nghiệm pb: \(x_1=\frac{-b+\left|b-4\right|}{2};x_2=\frac{-b-\left|b-4\right|}{2}\)
Với b>4 thì: \(x_1=-2;x_2=\frac{-2b+4}{2}=-b+2\)
Với b<0 thì: x1=-b+2 ; x2=-2
Vậy khi c=2b-4 và b tùy ý thì PT: x2+bx+c=0 luôn có 1 nghiệm nguyên là -2
a) |x-7|=2x+3 (1)
Ta có:|x-7|=x-7<=>x-7 \(\ge\) 0<=>x\(\ge\)7
|x-7|=-(x-7)<=>x-7<0<=>x<7
Nếu x\(\ge\) 7thì (1) <=>x-7=2x+3
<=>x-2x=7+3
<=>-x = 10
<=>x=-10 (ko thỏa mãn đk)
Nếu x<7 thì (1) <=>-(x-7)=2x+3
<=>-x+7=2x+3
<=>-x-2x=-7+3
<=>-3x=-4
<=>x=4/3 (thỏa mãn đk)
\(Q\left(x\right)=\)\(x^2+2x^4+4x^3-5x^6+3x^2-4x-1\) \(=\) \(-5x^6+2x^4+4x^3+4x^2-4x-1\)
Vậy, các hệ số khác 0 : -Hệ số của \(x^6\) là \(-5\)
-Hệ số của \(x^4\) là \(2\)
-Hệ số của \(x^3\) là \(4\)
-Hệ số của \(x^2\) là \(4\)
-Hệ số của \(x\) là \(-4\)
-Hệ số tự do là \(-1\)
Hệ số bằng 0 là hệ số của \(x^5\)
Ta có : \(\frac{8n+3}{2n-1}=4+\frac{7}{2n-1}\)
nên để \(8n+3\) chia hết cho \(2n-1\) thì \(7\)phải chia hết cho \(2n-1\), tức \(n\ne\frac{1}{2}\); \(n=1;n=4;\)
Vậy tập hơp các số nguyên thỏa mãn ycbt là \(n\in\left\{1;4\right\}\)
Để 8n + 3 chia hết cho 2n - 1 <=> \(\frac{8n+3}{2n-1}\) là số nguyên
Ta có :\(\frac{8n+3}{2n-1}=\frac{4\left(2n-1\right)+7}{2n-1}=\frac{4\left(2n-1\right)}{2n-1}+\frac{7}{2n-1}=4+\frac{7}{2n-1}\)
Để \(4+\frac{7}{2n-1}\) là số nguyên <=> \(\frac{7}{2n-1}\) là số nguyên
=> 2n - 1 \(\in\) Ư ( 7 ) => Ư ( 7 ) = { - 7 ; - 1 ; 1 ; 7 }
Ta có : 2n - 1 = - 7 <=> 2n = - 6 => n = - 3 ( TM )
2n - 1 = - 1 <=> 2n = 0 => n = 0 ( TM )
2n - 1 = 1 <=> 2n = 2 => n = 1 ( TM )
2n - 1 = 7 <=> 2n = 8 => n = 4 ( TM )
Vậy n \(\in\) { - 3 ; 0 ; 1 ; 4 }
a) \(4x-7>0\Leftrightarrow4x>7\)\(\Leftrightarrow x>\frac{7}{4}\)
b) \(-5x+8>0\Leftrightarrow5x<8\Leftrightarrow x<\frac{8}{5}\)
c)\(9x-10\le0\Leftrightarrow9x\le10\)\(\Leftrightarrow x\le\frac{10}{9}\)
d) \(\left(x+1\right)^2+4\le x^2+3x+10\)\(\Leftrightarrow x^2-2x+1+4\le x^2+3x+10\)
\(\Leftrightarrow5x\ge-5\Leftrightarrow x\ge-1\)
a,
4x - 7 > 0
↔ 4x > 7
↔ x > \(\dfrac{7}{4}\)
Vậy tập nghiệm của bất phương trình là S = { x / x>\(\dfrac{7}{4}\) }
b,
-5x + 8 > 0
↔ 8 > 5x
↔ \(\dfrac{8}{5}\) > x
Vậy tập nghiệm của bất phương trình là S = { x / \(\dfrac{8}{5}\) > x }
c,
9x - 10 ≤ 0
↔ 9x ≤ 10
↔ x ≤ \(\dfrac{10}{9}\)
Vậy tập nghiệm của bất phương trình là S = { x / x ≤ \(\dfrac{10}{9}\) }
d,
( x - 1 )\(^2\) + 4 ≤ x\(^2\) + 3x + 10
↔ x\(^2\) - 2x +1 +4 ≤ x\(^2\) + 3x + 10
↔ 1 + 4 - 10 ≤ x \(^2\) - x\(^2\) + 3x + 2x
↔ -5 ≤ 5x
↔ -1 ≤ x
Vậy tập nghiệm của bất phương trình là S = { x / -1 ≤ x}
Tập X gồm 10 phần tử. Số tập con của X là: