Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét : \(\Delta ABE,\Delta ACI\)
Có: \(\widehat{BAE}=\widehat{CAI}=90^o\)
\(AB=AC\left(gt\right)\)
Ta có: \(\widehat{ABC}=\widehat{ACI}\) (cùng phụ I)
\(\Rightarrow\Delta ABE=\Delta AIC\left(g.c.g\right)\Rightarrow\begin{cases}CI=BE\\AE=AI\end{cases}\)
b. Lại có: \(AE=AD\left(gt\right)\Rightarrow AI=AD\)
Hình thang IDMC có : AD = AI, AN//DM//CI nên MN = NC
c) ΔFNA~ΔFDC => \(\frac{S_{FNA}}{S_{FDC}}=\frac{AN^2}{DC^2}\) (1)
ΔAMC~ΔFDC => \(\frac{S_{AMC}}{S_{FDC}}=\frac{MC^2}{DC^2}\) (2)
Ta cũng có AN = DM (3)
Từ (1), (2) và (3) ta có : \(S^2_{FDC}=\frac{S_{FNA}.S_{AMC}.CD^4}{MD^2.MC^2}=S_{FNA}.S_{AMC}.\frac{\left(MD+MC\right)^4}{MD^2.MC^2}\)
\(\ge16.S_{FNA}.S_{AMC}\) (Áp dụng BĐT Cauchy)
~ Học tốt nha bạn ~
a) Xét \(\Delta ABC\)có:
\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)(định lí).
\(\Rightarrow\left(\widehat{BAC}+\widehat{ABC}\right)=180^0-\widehat{ACB}\).
Xét \(\Delta PAB\)có:
\(\widehat{APB}+\widehat{PAB}+\widehat{ABP}=180^0\)(định lí).
\(\Rightarrow\widehat{APB}=180^0-\left(\widehat{PAB}+\widehat{ABP}\right)\).
\(\Rightarrow\widehat{APB}=180^0-\frac{\widehat{BAC}+\widehat{ABC}}{2}\).
\(\Rightarrow\widehat{APB}=180^0-\frac{180^0-\widehat{ACB}}{2}\).
\(\Rightarrow\widehat{APB}=90^0+\frac{\widehat{ACB}}{2}\)(điều phải chứng minh).
Ta lại có:
\(\widehat{AMP}=\widehat{MPC}+\widehat{MCP}\)(tính chất góc ngoài của \(\Delta MPC\)).
\(\Rightarrow\widehat{AMP}=90^0+\frac{\widehat{ACB}}{2}\).
Do đó \(\widehat{APB}=\widehat{AMP}\left(=90^0+\frac{\widehat{ACB}}{2}\right)\).
Xét \(\Delta MAP\)và \(\Delta PAB\)có:
\(\widehat{AMP}=\widehat{APB}\)(chứng minh trên).
\(\widehat{MAP}=\widehat{PAB}\)(giả thiết).
\(\Rightarrow\Delta MAP~\Delta PAB\left(g.g\right)\).
\(\Rightarrow\frac{AP}{AB}=\frac{AM}{AP}\)(tỉ số đồng dạng).
\(\Rightarrow AB.AM=AP.AP=AP^2\)(điều phải chứng minh).
HEA = EAF = AFH = 900
=> AEHF là hình chữ nhật
=> AF = EH
mà AF = FK (gt)
=> EH = FK
mà EH // FK (AEHF là hình chữ nhật)
=> EHKF là hình bình hành
O là trung điểm của AH (AEHF là hình chữ nhật)
I là trung điểm của FH (EHKF là hình bình hành)
=> OI là đường trung bình của tam giác HAF
=> OI // AC