K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 8 2021

Do D đối xứng M qua AB \(\Rightarrow\) AB là trung trực DM

\(\Rightarrow AM=AD\) và \(\widehat{DAB}=\widehat{MAB}\)

Tương tự ta có \(AM=AE\) và \(\widehat{CAM}=\widehat{CAE}\)

\(\Rightarrow\widehat{DAE}=\widehat{DAB}+\widehat{MAB}+\widehat{CAM}+\widehat{CAE}=2\left(\widehat{MAB}+\widehat{CAM}\right)=2\widehat{BAC}\)

Do \(AM=AD=AE\Rightarrow\Delta ADE\) cân tại A

Kẻ đường cao AH ứng với DE \(\Rightarrow\) H đồng thời là trung điểm DE và \(\widehat{DAH}=\dfrac{1}{2}\widehat{DAE}=\dfrac{1}{2}.2\widehat{BAC}=\widehat{BAC}\)

Trong tam giác vuông ADH:

\(sin\widehat{DAH}=\dfrac{DH}{AD}\Rightarrow DH=AD.sin\widehat{DAH}=AM.sin\widehat{BAC}\)

\(\Rightarrow\dfrac{1}{2}DE=AM.sin\widehat{BAC}\Rightarrow DE=2AM.sin\widehat{BAC}\)

Mà ABC cố định  \(\Rightarrow DE_{max}\) khi \(AM_{max}\Rightarrow AM\) là đường kính của đường tròn

Hay M đối xứng A qua tâm O

NV
12 tháng 8 2021

undefined

Tham khảo:

undefined

29 tháng 12 2021

Không vẽ hình đc , sợ duyệt

a) Lấy \(E\)trên \(BC\)sao cho \(CDE=ADB\)

Tam giác \(CDE\)= tam giác \(ADB\left(g.g\right)\)

 Tỉ số các đường cao tương đương với ứng bằng tỉ số đóng dạng :

\(\frac{DH}{DK}=\frac{CE}{AB}=\frac{x}{z}=\frac{CE}{c}=\frac{c}{z}=\frac{CE}{x}\left(1\right)\)

Tương tự \(\frac{b}{y}=\frac{BE}{x}\left(2\right)\)

Từ (1) và (2) ta suy ra : \(\frac{b}{y}+\frac{c}{z}=\frac{BE+CE}{x}=\frac{a}{x}\)

b) Xét S \(=\frac{a}{x}+\left(\frac{b}{y}+\frac{c}{z}\right)=\frac{a}{x}+\frac{a}{x}=\frac{2a}{x}\). Do đó :

S nhỏ nhất \(\frac{a}{x}\)nhỏ nhất = x lớn nhất = \(D=M\)( M là điểm chính giữa của cung BC không chứa A )

HT

Mệt 

29 tháng 12 2021

undefined

Đây ạ

HT

@@@@@@@@@@@@

16 tháng 6 2021

mày rip rồi con ạ

sorry 

mình mới học lớp 5 nên chắc ko giải được bài này

28 tháng 5 2019

Kẻ AH ⊥ DE tại H

D A E ^ = 2 B A C ^

=>  D A H ^ = B A C ^

Từ DE=2DH; AD=AM=AE

Suy ra DH=AD.sin D A H ^

Từ đó  D E m a x <=> AM = 2R