K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2019

Ta có:

  B P Q ^ = B R Q ^ = R B N ^ + R N B ^ = E B F ^ + B A E ^ = 90 0 − B F E ^ + 90 0 − A B E ^ = 180 0 − B F E ^ − A B E ^ = A F B ^ − A B R ^ ⇒ A F B ^ = B P Q ^ + A B R ^

3 tháng 5 2016

a)Xét tam giác BAD và BED(đều là ta giác vuông)

         BD là cạnh chung

          ABD=DBE(Vì BD là tia p/giác)

\(\Rightarrow\)tam giác BAD=tam giác BED(cạnh huyền góc nhọn)

\(\Rightarrow\)AB=BE(cặp cạnh tương ứng)

b)Vì tam giác BAD=tam giác BED(cạnh huyền góc nhọn)

  \(\Rightarrow\)DA=DE(cặp cạnh tương ứng)

Xét tam giác ADF và EDCđều là ta giác vuông)

     DA=DE(CMT)

     ADF=EDC(đđ)

\(\Rightarrow\)tam giác ADF=tam giác EDC(cạnh góc vuông góc nhọn)

\(\Rightarrow\)DF=DC(cặp cạnh tương ứng)

Do đó tam giác DFC cân tại D(vì DF=DC)

c)Vì DA=DE(CMT)\(\Rightarrow\)tam giác DAE can tại D

Mà ADE=FDC(đđ)

     Mà hai tam giác DAE và CDF cân 

Do đó:DAE=DEA=DFC=DCF

\(\Rightarrow\)AE//FC vì DFC=DAE

Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn...
Đọc tiếp

Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng

Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng

Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn vectoAB=k. vectoAC và vectoMN=k. vectoMP (k khác 1). Giả sử X, Y, Z là các điểm chia các đoạn thẳng AM, BN và CP theo cùng 1 tỉ số. CMR: X, Y, Z thẳng hàng

Bài 4: Cho góc xOy và 2 điểm M, N di chuyển trên 2 cạnh Ox, Oy thỏa mãn OM=2ON.
a)) CMR: trung điểm I của MN luôn thuộc 1 đường thẳng cố định
b)) Nghiên cứu trường hợp giả thiết thay OM=2ON thành OM=mON với m là 1 hằng số cố định
c)) Nghiên cứu trường hợp thay giả thiết I là trung điểm MN thành giả thiết I là điểm chia MN theo tỉ số k cố định. (toán lớp 10 ạ)

0
NM
14 tháng 1 2021

A B C I M H J K

a. ta có \(BI=\frac{1}{4}BA=\frac{3}{4}\)

Dễ thấy hai tam giác \(\Delta ABM~\Delta CBI\Rightarrow\frac{MB}{IB}=\frac{AB}{BC}\Rightarrow MB=\frac{3}{4}.\frac{3}{4}=\frac{9}{16}\)

vậy \(\frac{BM}{BC}=\frac{9}{64}\).

b.Xét tam giác AJB ta áp dụng địh lý menelaus có

\(\frac{AC}{CJ}.\frac{JK}{KB}.\frac{BI}{IA}=1\Rightarrow\frac{JK}{KB}=\frac{3}{2}\Rightarrow\frac{BK}{KJ}=\frac{2}{3}\)

28 tháng 7 2016

a) Ta có góc BEC = góc BDC = 90o (góc nội tiếp chắn giữa đường tròn)

Suy ra BD \(\perp\) AC và CE \(\perp\) AB. Mà BD cắt CE tại H là trực tâm \(\Delta\) ABC.

Suy ra AH \(\perp\) BC

Vì AH \(\perp\) BC, BD \(\perp\) AC nên góc HFC = góc HDC = 90o.

Suy ra góc HFC + góc HDC = 180o

Suy ra HFCD là tứ giác nội tiếp

\(\Rightarrow\) góc HDC = góc HCD.

28 tháng 7 2016

b) Vì M là trung điểm cạnh huyền của hình tam giác vuông ADH nên MD = MA = MH. Tương tự ta có ME = MA = MH

Suy ra MD = ME

Mà OD = OE nên \(\Delta\) OEM = \(\Delta\) ODM \(\Rightarrow\) góc MOE = góc MOD = \(\frac{1}{2}\) góc EOD

Theo qua hệ giữa góc nội tiếp và góc ở tâm cùng chắn cung, ta có góc ECD = \(\frac{1}{2}\) góc EOD

Theo ý a) ta có góc HFD = góc HCD = góc ECD

\(\Rightarrow\) góc MOD = góc HFD hay góc MOD = góc MFD

Suy ra tứ giác MFOD là tứ giác nội tiếp

\(\Rightarrow\) góc MDO = 180o - góc MPO = 90o \(\Rightarrow\) MD \(\perp\) DO

Chứng minh tương tự ta có MEFO là tứ giác nội tiếp

Suy ra 5 điểm M, E, F, O, D cùng thộc 1 đường tròn.

31 tháng 12 2015

A B C D O M

a) BC vuông góc với AO là theo tính chất hai tiếp tuyến đi qua 1 điểm A

b) Xét hai tam giác DCO và DBA có góc D chung và góc C = góc B = 90 độ (tính chất tiếp tuyến)

=> tam giác DCO đồng dạng với tam giác DBA

=>  DC/DB = DO/DA

=> DC.DA = DO.DB (đpcm)

c) Vì OM vuông góc với DB => OM // BA (cùng vuông góc với DB)

Ta có AM/DM + 1 = (AM + DM)/DM = DA/DM

Theo Viet ta có: DA/DM = AB/MO

=> AM/DM + 1 = AB/OM

=> AB/OM - AM/DM = 1    (*)

Ta lại có tam giác MOA cân (vì góc MOA = góc BAO do so le trong, góc MAO = góc BAO do tính chất hai tiếp tuyến cùng 1 điểm)

=> OM = AM

(*) trở thành: AB/AM - AM/DM = 1 (đpcm)

22 tháng 12 2016

Bài 2:
Giải:

Đổi \(0,6=\frac{3}{5}\)

Tổng độ dài 2 cạnh là:
32 : 2 = 16 ( cm )
Gọi độ dài 2 cạnh của hình chữ nhật là a, b

Ta có: \(\frac{a}{b}=\frac{3}{5}\Rightarrow\frac{a}{3}=\frac{b}{5}\) và a + b = 16

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{a+b}{3+5}=\frac{16}{8}=2\)

+) \(\frac{a}{3}=2\Rightarrow a=6\)

+) \(\frac{b}{5}=2\Rightarrow b=10\)

Vậy chiều dài 2 cạnh của hình chữ nhật là 6 cm; 10 cm

Bài 3:

Ta có: \(y=f\left(x\right)=x2-1\)

Khi \(f\left(x\right)=1\)

\(\Rightarrow1=x2-1\)

\(\Rightarrow2x=2\)

\(\Rightarrow x=1\)

Vậy \(x=1\)

22 tháng 12 2016

lop 7 nha may ban

7 tháng 7 2016

Các bạn là giúp mình vớingaingung

7 tháng 7 2016

Các bạn làm giúp mình vớingaingung