K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2019

Ôn tập : Tứ giác

a, Vì ΔDEF vuông tại D⇒ \(\widehat{FDE}=90^0\)

hay \(\widehat{ADB}=90^0\)

Vì DK là đường cao của ΔDEF

⇒ DK ⊥ EF

\(\widehat{DKE}=\widehat{DKF}=90^0\)

Vì KA ⊥ DE ⇒ \(\widehat{DAK}=\widehat{A_1}=90^0\)

Vì KB ⊥ DF ⇒ \(\widehat{DBK}=\widehat{B_1}=90^0\)

Tứ giác ADBK có\(\left\{{}\begin{matrix}\widehat{ADB}=90^0\\\widehat{DAK}=90^0\\\widehat{DBK}=90^0\end{matrix}\right.\)

⇒ Tứ giác ADBK là hình chữ nhật

⇒ AB = DK (hai đường chéo trong hình chữ nhật)(đpcm)

b, Vì C đối xứng với D qua I

⇒ I là trung điểm của CD

Tứ giác DFCK có

\(\left\{{}\begin{matrix}\text{I là trung điểm của FK}\\\text{I là trung điểm của CD}\\\text{Đường chéo FK và CD}\end{matrix}\right.\)

⇒ Tứ giác DFCK là hình bình hành

⇒ DF // CK (đpcm)

c,

Vì tứ giác ADBK là hình chữ nhật

⇒ AK // BD

⇒ AK // DF

Ta có \(\left\{{}\begin{matrix}\text{DF // CK }\\\text{AK // DF}\end{matrix}\right.\)

⇒ A, K, C thẳng hàng (tiên đề Ơclit)

Vì DF // CK

⇒ BF // AC

⇒ Tứ giác BFAC là hình thang (1)

Kẻ thêm: Từ F kẻ FN ⊥ AC

\(\widehat{CNF}=\widehat{KNF}=90^0\)

Vì tứ giác ADBK là hình chữ nhật

\(\widehat{AKB}=90^0\)

\(\left\{{}\begin{matrix}\text{FN ⊥ AC}\\\text{BF // AC}\end{matrix}\right.\)⇒ BF ⊥ FN

\(\widehat{BFN}=90^0\)

Tứ giác BFNK có \(\left\{{}\begin{matrix}\widehat{BFN}=90^0\\\widehat{B_1}=90^0\\\widehat{KNF}=90^0\end{matrix}\right.\)

⇒ Tứ giác BFNK là hình chữ nhật

⇒ FN = BK (2 đường chéo)

Vì tứ giác DFCK là hình bình hành

⇒ CF = DK

mà AB = CK

⇒ AB = CF

ΔABK và ΔCFN có \(\left\{{}\begin{matrix}\text{AB = CF}\\\widehat{CNF}=\widehat{AKB}=90^0\\\text{FN = BK}\end{matrix}\right.\)

⇒ ΔABK ~ ΔCFN (ch.cgv)

\(\widehat{A_2}=\widehat{ACF}\) (2)

Từ (1), (2) ⇒ Tứ giác BFCA là hình thang cân (đpcm)

d, Ta có

\(\left\{{}\begin{matrix}\text{Tứ giác ADBK là hình chữ nhật}\\\text{Đường chéo AB và DK}\\\text{AB cắt DK tại O}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\text{O là trung điểm của AB }\\\text{O là trung điểm của DK }\end{matrix}\right.\)

Vì I là trung điểm của FK

⇒ DI là đường trung tuyến của ΔCDK

Vì O là trung điểm của DK

⇒ FO là đường trung tuyến của ΔCDK

ΔCDK có

\(\left\{{}\begin{matrix}\text{DI là đường trung tuyến của ΔCDK}\\\text{FO là đường trung tuyến của ΔCDK}\\\text{DI cắt FO tại H}\end{matrix}\right.\)

⇒ H là trọng tâm của ΔCDK

⇒ DH = \(\frac{2}{3}\)DI (Trọng tâm của tam giác cách đều mỗi đỉnh một khoảng bằng \(\frac{2}{3}\) độ dài đường trung tuyến đi qua đỉnh đó) (3)

Vì I là trung điểm của CD

⇒ DI = \(\frac{1}{2}\)CD (4)

Thay (4) vào (3), ta có

DH = \(\frac{2}{3}.\frac{1}{2}\)CD

⇒ DH = \(\frac{1}{3}\)CD

⇒ CD = 3DH (đpcm)

Chúc bạn học tốt !!!

3 tháng 12 2018

1a/IM vuông góc AB=>AMI=90 do

IN vuông góc AC=>ANI=90 do

△ABC vuông tại A=>BAC=90 do

=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật

1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)

Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)

Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi

3 tháng 12 2018

2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H

=> AM=MB VA EM=MH hay AB giao voi EH tai TD M

=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn

2b/Co AEBH la hcn=>EH=AB

+) Mà AB=AC=>EH=AC(1)

+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.

Co goc BAH=1/2 EAH ; góc AHE=1/2AHB

Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.

Mà 2 góc này ở vị trí SLT=> EH//AC(2)

Từ (1) va (2)=>tg AEHC la hbh

18 tháng 12 2016

a, Xté tứ giác AMIN có :

BMI=MAN=INA=900

=> Tứ giác AMIN là hình chữ nhật

b, Xét ΔABC

có : BI=IC ( gt)

IN // AM ( gt )

=> AN=NC

mà IN=ND

=> Tứ giác ADCI là hình bình hành (1)

mà INC = 900 (2) Từ (1) và (2) => ADCI là hình thoi

c, Kẻ IQ // BK (QϵCD)

ΔBKC có :

BI = IC (gt)

IQ // BK (cách dựng )

cm tương tự : DK=KQ

=> DK=KQ=QC

=> DK/DC = 1/3

 

 

17 tháng 12 2016

cái đây ý hả

25 tháng 12 2016

A B C I M N D K a , Tứ giác ANMI có : góc MAN = góc ANI = góc AMI = 90o nên là hình chữ nhật .

→ AI = MN

b, ΔABC vuông tại A có đường trung tuyến AI ứng với cạnh huyền nên :

AI = IC

→ ΔAIC cân tại I

→ Góc IAN = góc ICN

Xét ΔAIN và ΔCIN có :

Góc INA = Góc INC = 90o

AI = IC

Góc IAN = góc ICN

→ Δ AIN = Δ CIN ( cạnh huyền - góc nhọn )

→ AN = NC

Ta có : IN = ND

AN = NC

→ Tứ giác AICD là hình bình hành mà có hai đường chéo ID và AC vuông góc với nhau nên là hinhg thoi .