Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCHD vuông tại H có HM là đường cao ứng với cạnh huyền CD, ta được:
\(CD\cdot CM=CH^2\left(1\right)\)
Xét ΔCHE vuông tại H có HN là đường cao ứng với cạnh huyền CE, ta được:
\(CE\cdot CN=CH^2\left(2\right)\)
Từ (1) và (2) suy ra \(CD\cdot CM=CE\cdot CN\)
a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔCHD vuông tại H có HM là đường cao ứng với cạnh huyền CD, ta được:
\(CD\cdot CM=CH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔCHE vuông tại H có HN là đường cao ứng với cạnh huyền CE, ta được:
\(CE\cdot CN=CH^2\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(CD\cdot CM=CE\cdot CN\)
b: Ta có: \(CD\cdot CM=CE\cdot CN\)
nên \(\dfrac{CM}{CE}=\dfrac{CN}{CD}\)
Xét ΔCMN và ΔCED có
\(\dfrac{CM}{CE}=\dfrac{CN}{CD}\)
\(\widehat{MCN}\) chung
Do đó: ΔCMN\(\sim\)ΔCED
Bài 1 :
Có : \(\frac{AB}{AC}=\frac{5}{6}\Rightarrow AB=5k;AC=6k\) ( k \(\in N\) )
Xét \(\Delta ABC\) vuông tại A có :
\(BC^2=AB^2+AC^2\)
\(12^2=\left(5k\right)^2+\left(6k\right)^2\)
\(12^2=61k^2\)
\(\frac{144}{61}=k^2\Rightarrow k=\frac{12\sqrt{61}}{61}\) cm
Có AB = 5k = \(\frac{60\sqrt{61}}{61}\) cm
AC = 6k = \(\frac{72\sqrt{61}}{61}cm\)
Xét \(\Delta ABC\) vuông tại A có đường cao AH
=> \(AB^2=BH.BC\Rightarrow BH=\frac{300}{61}\) cm
Có : CH = BC - BH = \(\frac{432}{61}cm\)
Bài 2:
Xét \(\Delta\)CHD vuông ta có:
\(CH^2=CM.CD\)
Xét \(\Delta CHE\) vuông ta có:
\(CH^2=CN.CE\)
=> \(CH^2=CM.CD=CN.CE\)
a: Xét tứ giác CAHB có góc CAH=góc CBH=góc ACB=90 độ
nen CAHB là hình chữ nhật
SUy ra: AB=CH=9cm
\(HE=\dfrac{9^2}{4}=\dfrac{81}{4}=20.25\left(cm\right)\)
b: Xét ΔCHD vuông tại H có HA là đường cao
nên \(CA\cdot CD=CH^2\left(1\right)\)
Xét ΔCHE vuông tại H có HB là đường cao
nên \(CB\cdot CE=CH^2\left(2\right)\)
TỪ (1) và (2) suy ra \(CA\cdot CD=CB\cdot CE\)
a, Áp dụng hệ thức về cạnh góc vuông và hình chiếu lên cạnh huyền trong các tam giác vuông HCD và HCE ta có CD.CM = CE.CN (= C H 2 )
b, Sử dụng a) để suy ra các tỉ lệ về cạnh bằng nhau. Từ đó chứng minh được ∆ CMN:CDE(c-g-c)
cảm ơn, rất hữu ich