K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2021

\(a,BC=HB+HC=25\left(cm\right)\)

Áp dụng HTL:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=225\\AC^2=CH\cdot BC=400\\AH^2=BH\cdot CH=144\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=15\left(cm\right)\\AC=20\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

Vì \(\widehat{ADH}=\widehat{AEH}=\widehat{BAC}=90^0\) nên ADHE là hcn

Do đó \(DE=AH=12\left(cm\right)\)

29 tháng 10 2015

ta có

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

\(a+b-2\sqrt{ab}\ge0\)

\(a+b\ge2\sqrt{ab}\)

\(\frac{a+b}{2}\ge\sqrt{ab}\)

25 tháng 12 2016

Ta có AH2=CH.BH=ab (1)

Gọi M là trung điểm của BC.

Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)

Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)

Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)

26 tháng 6 2018

b) Tứ giác ADHE là hình chữ nhật (tự chứng minh nhé)

⇒DE=AH⇒DE3=AH3
AH5=AH4.AH=BH2.CH2.AH=BD.BA.CE.CA.AH=BD.CE.AH.BC.AH=BD.CE.BC.AH2

⇒AH3=BD.CE.BC⇔DE3=BD.CE.BC(dpcm)

9 tháng 9 2018

Bài 1 

a) \(BC=125\Rightarrow BC^2=15625\)

\(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)từ đây ta có \(\frac{AB^2}{9}=\frac{AC^2}{16}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có

\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{25}=\frac{BC^2}{25}=\frac{15625}{25}=625\)

\(\frac{AB^2}{9}=625\Rightarrow AB=75\)

\(\frac{AC^2}{16}=625\Rightarrow AC=100\)

Áp dụng hệ thức lượng trong tam giác vuông ta có 

\(AB^2=BH\cdot BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{5625}{125}=45\)

\(AC^2=CH\cdot BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{10000}{125}=80\)

b.c) làm tương tự cũng áp dụng HTL trong tam giác vuông

Bài 2

Hình bạn tự vẽ

Ta có \(EH\\ AC\left(EH\perp AB;AC\perp AB\right)\Rightarrow\frac{BE}{AB}=\frac{BH}{BC}\Rightarrow BE=\frac{AB\cdot BH}{BC}\Rightarrow BE^2=\frac{AB^2\cdot BH^2}{BC^2}\)

\(\Leftrightarrow BE^2=\frac{BH\cdot BC\cdot BH^2}{BC^2}=BH^3\)

Bài 3 Đề bài này không đủ dữ kiện tính S của ABC

12 tháng 9 2018

Cám ơn cậu nhaaaaa