Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)có :
\(C\ge\frac{4}{1+\left(a+b\right)^2}\ge\frac{4}{1+1}=2\)
Dấu = khi a=b=1/2
Câu c)
Ta có: AD là phân giác ^BAC
=> ^BAD = ^ DAC = ^BAC : 2 = 90o : 2 = 45o
Xét \(\Delta\)AIB có: ^AIB = 90o; ^BAI = ^BAD = 45o
=> ^ABI = 45o
Xét \(\Delta\)BAM vuông tại A có: ^ABM = ^ABI = 45o => ^AMB = 45o => \(\Delta\)ABM vuông cân
có AI là đường cao => AI là đường trung tuyến => I là trung điểm BM
=> BM = 2 BI
Xét \(\Delta\)ABM vuông tại A có AI là đương cao => AB2 = BI.BM = BI.2BI = 2BI2
Xét \(\Delta\)ABC vuông tại A có: AH là đường cao: => AB2 = BH.BC
=> BH.BC = 2BI2
Tham khảo tại đây nha:
Câu hỏi của Moe - Toán lớp 9 - Học toán với online math
mã câu :1308090
\(VT=\frac{a^3}{a^2+abc}+\frac{b^3}{b^2+abc}+\frac{c^3}{c^2+abc}\)
Xét \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow ab+bc+ac=abc\)
\(\Rightarrow VT=\frac{a^3}{a^2+ab+bc+ac}+\frac{b^3}{b^2+ab+bc+ac}+\frac{c^3}{c^2+ab+bc+ac}\)
\(\Leftrightarrow VT=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{b^3}{\left(b+a\right)\left(b+c\right)}+\frac{c^3}{\left(c+b\right)\left(c+a\right)}\)
Áp dụng bất đẳng thức Cauchy ta có :
\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)
Thiết lập tương tự và thu lại ta có :
\(VT+\frac{a+b+c}{2}\ge\frac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow VT\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{2}\left(a+b+c\right)=\frac{a+b+c}{4}\) ( đpcm)
Dấu " = " xảy ra khi \(a=b=c=3\)
Chúc bạn học tốt !!!
Xét tam giác ABC vuông tại A có:
Đáp án cần chọn là: A