Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hình thang ABCD đáy nhỏ AB đáy lớn CD. Hai đường chéo AC và BD cắt nhau tại G. Biết diện tích tam giác AGD bằng và diện tích tam giác CGD bằng Tính diện tích hình thang ABCD.
Trả lời: Diện tích hình thang ABCD là 73,96 \(cm^2\)
Gọi \(S_1,S_2,S_3,S_4\) lần lượt là diện tích của các tam giác AGD , AGB , BGC và CGD
Ta có : \(\frac{S_1}{S_2}=\frac{DG}{BG}=\frac{S_4}{S_3}\Rightarrow S_1.S_3=S_2.S_4\) (1)
Dễ thấy tam giác ABD và tam giác ABC có diện tích bằng nhau vì có chung cạnh đáy và đường cao không đổi
Mà : \(S_{ABD}=S_1+S_2;S_{ABC}=S_3+S_2\Rightarrow S_1=S_3\) (2)
Từ (1) và (2) suy ra \(S_2.S_4=S_1^2\Rightarrow S_2=\frac{S_1^2}{4}\)
Suy ra : \(S_{ABCD}=S_1+S_2+S_3+S_4=2S_1+\frac{S_1^2}{S_4}+S_4=2.18+\frac{18^2}{25}+25=\frac{1849}{25}=73,96\left(cm^2\right)\)
A B C D 150 37,5 Gọi D như hình vẽ ta có \(\Delta ABD\) chính là tam giác chung đỉnh A với \(\Delta ABC\) cà cũng chính là đường cao của \(\Delta ABD\)
Chiều cao của \(\Delta ABC\) hay \(\Delta ABD\) là :
\(37,5.2:5=15\left(cm\right)\)
Cạnh BC là :
\(150.2:5=20\left(cm\right)\)
Đáp số : \(20cm\)