Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC và ΔAED có
AB/AE=AC/AD
góc A chung
=>ΔABC đồng dạng vơi ΔAED
b: EF//AB
=>EF/AB=CE/CA
=>EF/18=5/8
=>EF=90/8=11,25(cm)
BF/FC=AE/EC=3/5
Xét tam giác ABC và tam giác AED có
\(\hept{\begin{cases}A:gócchung\\\frac{AE}{AB}=\frac{AD}{AC}\left(\frac{8}{20}=\frac{6}{15}\right)\end{cases}}\)
Vậy tam giác ABC đồng dạng với tam giác AED (c-g-c)
easy :>
A B C D E
Ta có : \(\frac{AE}{AB}=\frac{6}{15}=\frac{2}{5} ;\frac{ AD}{AC}=\frac{8}{20}=\frac{2}{5}\)
\(\Rightarrow\frac{AE}{AB}=\frac{AB}{AC}\)
Xét 2 tam giác : ADE và ACB có :
\(\widehat{A}\)chung
\(\frac{AE}{AB}=\frac{AB}{AC}\)
\(\Rightarrow\Delta ADE~\Delta ACB\left(TH2\right)\)
Sửa đề: Tam giác ABC vuông tại A. Câu c. C/m IB.AD=IC.AE
a.
Ta có:
\(\dfrac{AE}{AB}=\dfrac{6}{15}=\dfrac{2}{5};\dfrac{AD}{AC}=\dfrac{8}{20}=\dfrac{2}{5}\)
\(\Rightarrow\dfrac{AE}{AB}=\dfrac{AD}{AC}\)
Xét tam giác ABC và tam giác AED,có:
\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\) ( cmt )
\(\widehat{A}:chung\)
Vậy tam giác ABC dồng dạng tam giác AED ( c.g.c )
b.
Áp dụng định lý pitago vào tam giác vuông ABC, có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{15^2+20^2}=\sqrt{625}=25cm\)
Ta có: tam giác ABC dồng dạng tam giác AED ( c.g.c )
\(\Rightarrow\dfrac{AD}{AC}=\dfrac{DE}{BC}\)
\(\Leftrightarrow\dfrac{2}{5}=\dfrac{DE}{25}\)
\(\Leftrightarrow5DE=50\)
\(\Leftrightarrow DE=10cm\)
c.Áp dụng t/c đường phân giác góc A, ta có:
\(\dfrac{AB}{AC}=\dfrac{IB}{IC}\)
Mà \(\dfrac{AB}{AC}=\dfrac{AE}{AD}\) ( 2 tam giác đồng dạng )
\(\Rightarrow\dfrac{AE}{AD}=\dfrac{IB}{IC}\)
\(\Leftrightarrow IB.AD=IC.AE\)
b: Xet ΔAED và ΔABC có
AE/AB=AD/AC
góc A chung
=>ΔAED đồng dạng với ΔABC