Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ABCOMNHE
a) Do M, N thuộc đường tròn đường kính BC nên \(\widehat{BMC}=\widehat{BNC}=90^o\Rightarrow BN\perp AC;CM\perp AB\)
Xét tam giác ABC có BN và CM là hai đường cao nên H là trực tâm, vậy thì AH cũng là đường cao của tam giác hay \(AH\perp BC\)
b) Do AMH và ANH là các tam giác vuông có chung cạnh huyền AH nên AMHN là tứ giác nội tiếp đường tròng tâm E, bán kính EH. Vậy thì \(\widehat{MHE}=\widehat{MNA}\) (Hai góc nội tiếp cùng chắn cung AM)
Lại có EM = EH nên \(\widehat{MHE}=\widehat{HME}\)
Vậy nên \(\widehat{HME}=\widehat{MNA}\) (1)
Lại có do OM = OC nên \(\widehat{OMC}=\widehat{OCM}\) mà \(\widehat{OCM}=\widehat{BNM}\) (Hai góc nội tiếp cùng chắn cung BM)
Vậy nên \(\widehat{OMC}=\widehat{BNM}\) (2)
Từ (1) và (2) suy ra \(\widehat{HME}+\widehat{OMC}=\widehat{MNA}+\widehat{MNB}\Rightarrow\widehat{EMO}=\widehat{ANH}=90^o\)
Vậy ME là tiếp tuyến của đường tròn (O)
Xét tam giác MEO và NEO có: Cạnh EO chung, EM = EN, OM = ON
\(\Rightarrow\Delta MEO=\Delta NEO\left(c-g-c\right)\)
\(\Rightarrow S_{MEO}=S_{NEO}\Rightarrow S_{MEO}=\frac{1}{2}S_{MENO}\)
\(\Rightarrow\frac{1}{2}ME.MO=\frac{1}{4}.MN.EO\Rightarrow MN.OE=2ME.MO\)
c) Do tứ giác AMHN nội tiếp nên \(\widehat{MAH}=\widehat{MNH}\)
Mà \(\widehat{MCB}=\widehat{MNH}\Rightarrow\widehat{MAH}=\widehat{MCB}\)
Vậy thì \(\Delta AMH\sim\Delta CMB\left(g-g\right)\Rightarrow\frac{CM}{AM}=\frac{CB}{AH}=1\)
Lại có xét tam giác vuông AMC, \(tan\widehat{BAC}=\frac{MC}{AM}=1.\)
Câu hỏi của Nhóc vậy - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo câu tương tự tại đây.
Với câu c, ta thấy \(sin\widehat{BAC}=\frac{\sqrt{2}}{2}\Rightarrow\widehat{BAC}=45^o\Rightarrow tan\widehat{BAC}=1\Rightarrow\frac{BC}{AH}=1\)
Vậy AH = BC.
B M A E H O I C
b) Ta có : EA = EH ( gt )
Xét : tam giác MHA vuông tại M . có ME là trung tuyến
\(\Rightarrow ME=\frac{1}{2}AH\Rightarrow ME=EH\)
\(\Rightarrow\Delta MEH\)cân tại E
\(\Rightarrow\widehat{EMH}=\widehat{H_1}\left(1\right)\)
Ta lại có : \(OM=OC\left(=bk\right)\Rightarrow\Delta OMC\)cân tại O
\(\widehat{OMC}=\widehat{OCM}\left(2\right)\)
Mặt khác : Tam giác IHC vuông tại I => \(\widehat{ICM}+\widehat{H_1}=90^o\)
mà \(\widehat{H_1}=\widehat{H_2}\)( đối đỉnh ) \(\Rightarrow\widehat{ICM}+\widehat{H_2}=90^o\left(3\right)\)
Từ (1)(2) và (3) => \(\widehat{OMC}+\widehat{EHM}=90^o\)
mà \(\widehat{OME}=\widehat{OMC}+\widehat{EHM}=90^o\)
\(\Rightarrow ME\perp OM\)tại M
Vậy : ME là tiếp tuyến của đường tròn tâm O ( đpcm )
\(1,\)Gọi I là tâm đường tròn đường kính BC thì I là trung điểm BC và \(MI=IN=BI=CI=\dfrac{1}{2}BC\) (bán kính cùng đường tròn)
\(\Rightarrow\Delta BNC\) vuông tại N và \(\Delta CMB\) vuông tại N
Vậy \(\widehat{BMC}=\widehat{BNC}=90\) độ
\(2,\)Ta có \(H=BM\cap CN\)
Mà BM, CN là đường cao tam giác ABC
Suy ra H là trực tâm
\(\Rightarrow AH\) là đường cao thứ 3
\(\Rightarrow AH\perp BC\)
\(3,\) Gọi giao điểm của tiếp tuyến tại N và AH là K, AH cắt BC tại E.
Ta có \(\widehat{KNH}+\widehat{INH}=90\)
Mà \(\widehat{INH}=\widehat{NCI}\left(NI=IC\right)\)
\(\Rightarrow\widehat{KNH}+\widehat{NCI}=90\)
Mà \(\widehat{NCI}+\widehat{CHE}=90\)
\(\Rightarrow\widehat{KNH}=\widehat{CHE}\)
Mà \(\widehat{CHE}=\widehat{NHK}\left(đđ\right)\)
\(\Rightarrow\widehat{KNH}=\widehat{NHK}\)
\(\Rightarrow\Delta NHK\) cân tại K\(\Rightarrow NK=KH\left(1\right)\)
Ta có \(\widehat{KNH}+\widehat{KNA}=90;\widehat{KHN}+\widehat{NAH}=90\)
\(\Rightarrow\widehat{ANK}=\widehat{NAK}\Rightarrow NK=AK\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow NK=KH=AK\)
\(\Rightarrow\)Đfcm
Tick plzzz, nghĩ nát óc đó
1: Xét (O) có
\(\widehat{BNC}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{BNC}=90^0\)
Xét (O) có
\(\widehat{BMC}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{BMC}=90^0\)
2: Xét ΔABC có
BM là đường cao ứng với cạnh AC
CN là đường cao ứng với cạnh AB
BM cắt CN tại H
Do đó: H là trực tâm của ΔABC
Suy ra: AH\(\perp\)BC