K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2019

Chọn B.

Theo hệ quả định lí cosin ta có:

 

Mà a2 + b2 - c2 > 0  suy ra: cosC > 0  suy ra: C < 900.

Câu 1: Cho tam giác abc biết a=6,b=4,c=8 . Độ dài đường cao từ đỉnh A là 3.Tính diện tích tam giác ?A. 6     B.12       C.9         D.15Câu 2: Cho tam giác abc biết a=4, b=5, góc C=60 độ. Diện tích tam giác bằng bao nhiêu?A.10     B.\(\sqrt{84}\)  C.42       D.15Câu 3. Một tam giác có ba cạnh là 13, 14, 15.Diện tích tam giác bằng bao nhiu?A.84       B.\(\sqrt{84}\)     C.42       D.\(\sqrt{168}\)Câu 4: Tam giác...
Đọc tiếp

Câu 1: Cho tam giác abc biết a=6,b=4,c=8 . Độ dài đường cao từ đỉnh A là 3.Tính diện tích tam giác ?

A. 6     B.12       C.9         D.15

Câu 2: Cho tam giác abc biết a=4, b=5, góc C=60 độ. Diện tích tam giác bằng bao nhiêu?

A.10     B.\(\sqrt{84}\)  C.42       D.15

Câu 3. Một tam giác có ba cạnh là 13, 14, 15.Diện tích tam giác bằng bao nhiu?

A.84       B.\(\sqrt{84}\)     C.42       D.\(\sqrt{168}\)

Câu 4: Tam giác với ba cạnh là 5, 12, 13 có bán kính đường tròn ngoại tiếp bằng bao nhiu ?

A. 6        b. 8     C.\(\frac{13}{2}\)D.\(\frac{11}{2}\)

Câu 5. Tam giác với ba cạnh 3,4,5 có bán kính đường tròn nội tiếp tam giác đó bằng bao nhiu?

A.1       b.\(\sqrt{2}\)        c. \(\sqrt{3}\)        D.2   

Câu 6: Cho tam giác ABC có a+b2 -c2 > 0. Khi đó góc C là ?

A. Góc C > 90 độ       B. Góc C < 90 độ    C.Góc C = 90  độ             D. Không có kết luận

Dạ e xin chào các anh, chị. Em mong anh/chị hãy giúp e làm bài ở trên và chỉ em cách làm ra được đáp án đó. Em xin chân thành

cảm ơn rất nhiều . Vì em sắp thi rồi nên một số câu hỏi e vẫn không làm được . Mong a/c giúp e nhiệt tình nha ^-^

0

a: góc C=90-30=60 độ

Xét ΔBAC vuông tại A có cos B=AB/BC

nên \(BC=\dfrac{2\sqrt{3}}{cos30}=4\left(cm\right)\)

=>AC=2cm

b: Xét ΔbAC vuông tại A có cos B=AB/BC

nên AB/BC=1/2

=>BC=2

=>AC=căn 3

NV
14 tháng 4 2020

a/ - Với \(x\ge\frac{3}{5}\) BPT tương đương:

\(2x^2-5x+3< 0\Leftrightarrow1< x< \frac{3}{2}\)

- Với \(x< \frac{3}{5}\) BPT tương đương:

\(x^2+5x-3< 0\Leftrightarrow\frac{-5-\sqrt{37}}{2}< x< \frac{-5+\sqrt{37}}{2}\)

Vậy nghiệm của BPT là: \(\left[{}\begin{matrix}1< x< \frac{3}{2}\\\frac{-5-\sqrt{37}}{2}< x< \frac{-5+\sqrt{37}}{2}\end{matrix}\right.\)

b/ -Với \(x< 8\) BPT vô nghiệm

- Với \(x\ge8\) hai vế ko âm, bình phương:

\(\left(x-8\right)^2>\left(x^2+3x-4\right)^2\)

\(\Leftrightarrow\left(x^2+3x-4\right)^2-\left(x-8\right)^2< 0\)

\(\Leftrightarrow\left(x^2+4x-12\right)\left(x^2-2x+4\right)< 0\)

\(\Leftrightarrow x^2+4x-12< 0\Rightarrow-6< x< 2\) (ktm)

Vậy BPT đã cho vô nghiệm

AH
Akai Haruma
Giáo viên
1 tháng 12 2018

Lời giải:

Theo BĐT Schur bậc 3:

\(abc\geq (a+b-c)(b+c-a)(c+a-b)=(3-2a)(3-2b)(3-2c)\)

\(\Leftrightarrow abc\geq 27+12(ab+bc+ac)-18(a+b+c)-8abc=-27+12(ab+bc+ac)-8abc\)

\(\Rightarrow 9abc\geq 12(ab+bc+ac)-27\Rightarrow abc\geq \frac{4}{3}(ab+bc+ac)-3\)

Do đó:

\(a^2+b^2+c^2+abc\geq a^2+b^2+c^2+\frac{4}{3}(ab+bc+ac)-3\)

\(=(a+b+c)^2-\frac{2}{3}(ab+bc+ac)-3=6-\frac{2}{3}(ab+bc+ac)\)

Mặt khác theo hệ quả quen thuộc của BĐT AM-GM:
\(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=3\)

\(\Rightarrow a^2+b^2+c^2+abc\geq 6-\frac{2}{3}(ab+bc+ac)\geq 6-\frac{2}{3}.3=4\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$

AH
Akai Haruma
Giáo viên
1 tháng 12 2018

Nếu bạn không được sử dụng thẳng BĐT Schur bậc 3 thì có thể CM nó thông qua BĐT AM-GM ngược dấu.

1 tháng 9 2019

Số phần tử của tập hợp A = { k2 + 1 | k εℤ, |k| \(\le\)2} là:

A. 1

B. 2 

C. 3

D. 5

1 tháng 9 2019

Bảo Chi Lâm bạn giải thích giùm đc ko?

1 tháng 8 2017

Ta có :\(|A|\ge B\left(B\ge0\right)\Leftrightarrow\left[{}\begin{matrix}A\ge B\\A\le-B\end{matrix}\right.\)

\(|A|\le B\left(B\le0\right)\Leftrightarrow-B\le A\le B\)

Áp dụng vào bài ta có :

a. \(4x^2\le1\Leftrightarrow|2x|\le1\Leftrightarrow-1\le2x\le1\Leftrightarrow-\dfrac{1}{2}\le x\le\dfrac{1}{2}\)

Vậy nghiệm của bất phương trình đã cho là \(-\dfrac{1}{2}\le x\le\dfrac{1}{2}\)

b.\(x^2+2x+1>0\Leftrightarrow\left(x+1\right)^2>0\Leftrightarrow x\ne-1\)(do \(\left(x+1\right)^2\ge0\) với mọi x)

Vậy nghiệm của bất phương trình đã cho là \(x\ne-1\)

c.\(x^2-4\ge0\Leftrightarrow x^2\ge4\Leftrightarrow|x|\ge2\Leftrightarrow\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)

Vậy nghiệm của bất phương trình đã cho là \(x\ge2\) hoặc \(x\le-2\)

d.\(-x^2+4x+5>0\Leftrightarrow-\left(x^2-4x+4\right)+9>0\Leftrightarrow\left(x-2\right)^2< 9\Leftrightarrow-3< x-2< 3\Leftrightarrow-1< x< 5\)Vậy nghiệm của bất phương trình đã cho là \(-1< x< 5\)

e. \(x^2-2x+1< 9\Leftrightarrow\left(x-1\right)^2< 9\Leftrightarrow|x-1|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)Vậy nghiệm của bất phương trình đã cho là \(-2< x< 4\)

f. \(2x^2>0\Leftrightarrow x^2>0\Leftrightarrow x\ne0\)( vì \(x^2\ge0\) với mọi x)

Vậy nghiệm của bất phương trình đã cho là \(x\ne0\)

NV
19 tháng 2 2020

\(sina\sqrt{1+\frac{sin^2a}{cos^2a}}=sina\sqrt{\frac{cos^2a+sin^2a}{cos^2a}}=\frac{sina}{\left|cosa\right|}=\pm tana\)

\(\frac{1-cos^2x}{1-sin^2x}+tanx.cotx=\frac{sin^2x}{cos^2x}+\frac{sinx}{cosx}.\frac{cosx}{sinx}=tan^2x+1=\frac{1}{cos^2x}\)

\(\frac{1-4sin^2xcos^2x}{\left(sinx+cosx\right)^2}=\frac{\left(1-2sinx.cosx\right)\left(1+2sinx.cosx\right)}{sin^2x+cos^2x+2sinx.cosx}=\frac{\left(1-sin2x\right)\left(1+2sinx.cosx\right)}{1+2sinx.cosx}=1-2sinx\)

\(sin\left(90-x\right)+cos\left(180-x\right)+sin^2x\left(1+tan^2x\right)-tan^2x\)

\(=cosx-cosx+sin^2x.\frac{1}{cos^2x}-tan^2x=tan^2x-tan^2x=0\)