Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC có \(\widehat{A}\) = \(\widehat{B}\) + \(\widehat{C}\) nên nó vuông tại A ; AO , CO lần lượt là tia phân giác của \(\widehat{A}\) và \(\widehat{C}\) nên BO là tia phân giác của góc B . Ta có góc OBC + góc OCB = \(\dfrac{1}{2}\) (\(\widehat{B}\) + \(\widehat{C}\)) = 45o nên \(\widehat{BOC}\) = 135o
Vậy chúng ta chọn đáp án (C)
Xin chào đồng loại. À k, fải là xin chào "c - hó" ms đúng tên của pạn chứ nhỉ, bạn "depgiaicogisaidau" thân yêu!
P/s: mai đổi thành "lachocogisaidau" nha!
Xét tam giác ABC có :
A + ABC + ACB = 180 *
=> ABC + ACB = 180* - a
Mà BC là phân giác ABC
=> ABD = CBD = \(\frac{1}{2}ABC\)
Mà CE là phân giác ACB
=> ACE = BCE = \(\frac{ACB}{2}\)
=> ECB + DBC = \(\frac{ACB+ABC}{2}\)= \(\frac{180-a}{2}\)
Xét tam giác OBC có :
OBC + OCB + BOC = 180*
=> BOC = 180* - ( OBC + OCB)
=> BOC = 180* - \(\frac{180-a}{2}\)
=> BOC =\(\frac{a}{2}\)(dpcm)
Do AO, CO lần lượt là tia phân giác của ∠A và ∠C nên BO là tia phân giác của ∠B
Xét tam giác OBC có:
Chọn (C) 135º.