K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD vuông tại D và ΔBCE vuông tại E có 

BA=BC

\(\widehat{ABD}\) chung

Do đó: ΔBAD=ΔBCE

b: Xét ΔBEF vuông tại E và ΔBDF vuông tại D có

BF chung

BE=BD

Do đó:ΔBEF=ΔBDF

Suy ra: \(\widehat{EBF}=\widehat{DBF}\)

hay BF là tia phân giác của góc ABC

a: Xét ΔBAD vuông tại D và ΔBCE vuông tại E có 

BA=BC

\(\widehat{ABD}\) chung

Do đó: ΔBAD=ΔBCE

b: Xét ΔBEF vuông tại E và ΔBDF vuông tại D có

BF chung

BE=BD

Do đó:ΔBEF=ΔBDF

Suy ra: \(\widehat{EBF}=\widehat{DBF}\)

hay BF là tia phân giác của góc ABC

30 tháng 5 2021

a)xét ΔBAD và ΔBCE có

\(\widehat{ADB}=\widehat{CEB}=90^o\)

\(\widehat{ABC}\) là góc chung

AB=BC(ΔABC cân tại B)

⇒ ΔBAD=ΔBCE(c.huyền.g.nhọn)

b)xét ΔEBF và ΔDBF có:

BF là cạnh chung

BD=BE(ΔBAD=ΔBCE)

\(\widehat{BDF}=\widehat{BEF}=90^o\)

⇒ΔEBF=ΔDBF(c.huyền.c.g.vuông)

\(\widehat{EBF}=\widehat{DBF}\)(2 góc tương ứng)

hay BF là phân giác của \(\widehat{ABC}\)(đ.p.cm)

c)xét ΔABF và ΔCBF có:

AC=BC(ΔABC cân tại B)

BF là cạnh chung

\(\widehat{EBF}=\widehat{DBF}\)(ΔEBF=ΔDBF)

⇒ΔABF=ΔCBF(c-g-c)

⇒FA=FC(2 cạnh tương ứng)

xét ΔAFC có:

FA+FC>AC(bất đẳng thức tam giác)

mà FA=FC⇒FA>\(\dfrac{AC}{2}\)(đ.p.cm)

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có 

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

Suy ra: BD=CE

b: Xét ΔAED có AE=AD

nên ΔAED cân tại A

c: Xét ΔEBI vuông tại E và ΔDCI vuông tại D có 

EB=DC

\(\widehat{EBI}=\widehat{DCI}\)

Do đó; ΔEBI=ΔDCI

Suy ra: IB=IC

Xét ΔAIB và ΔAIC có

AI chung

IB=IC

AB=AC

Do đó: ΔAIB=ΔAIC

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)

hay AI là tia phân giác của góc BAC

26 tháng 1 2022

Mình cảm ơn cậu nhé

11 tháng 5 2022

a, Xét Δ ABC, có :

\(AB^2+AC^2=BC^2\) (định lí Py - ta - go)

=> \(3^2+4^2=BC^2\)

=> \(25=BC^2\)

=> BC = 5 (cm)

Xét Δ ABC vuông tại A, theo hệ thức lượng có :

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

=> \(\dfrac{1}{AH^2}=\dfrac{1}{3^2}+\dfrac{1}{4^2}\)

=> AH = 2,4 cm

b, Xét Δ ABD, có :

HD = HB (gt)

AH là đường cao

=> Δ ABD cân

17 tháng 5 2022

lol

17 tháng 5 2022

lol

17 tháng 5 2022

hay

a) Xét 2 tg vuông AEC và ADB có: AB = AC (vì tam giác ABC cân tại A)

góc A chung

Do đó tg AEC = tg ADB (ch - gn)

=> BD = CE (đpcm)

b) xét 2 tg vuông CEB và BDC có: góc CBE = góc BCD (tam giác ABC cân tại A)

CE = BD (Cmt)

do đó tg CEB = tg BDC (cgv - gnk)

=> góc ECB = góc DBC

=> tam giác BIC cân tại I (đpcm)

c) xét 2 tg AIC và AIB có: AC = AB (tam giác ABC cân tại A)

AI chung

BI = IC (tam giác BIC cân (Cmt))

DO đó tg AIC = tg AIB (c.c.c)

=> góc IAC = góc IAB => AI là tia pg của góc BAC (Đpcm)

d) Ta có: tg CEB = tg BDC (cmt) => CD = BE mà AB = AC => AE = AD => AED cân tại A

Mà AI là tia pg của góc EAD nên AI vuông với DE(1)

Ta lại có: Tam giác ABC cân tại A mà AI là tia pg của góc BAC nên AI vuông BC (2)

Từ (1) và (2) suy ra DE // BC (cùng vuông vs BC) (đpcm)

e) ko bt

F) cm vuông như câu d nha

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

góc BAD chung

=>ΔABD=ΔACE

b: Xét ΔADI vuông tại D và ΔAEI vuông tại E có

AI chung

AD=AE

=>ΔADI=ΔAEI

=>góc DAI=góc EAI

=>AI là phân giác của góc DAE