Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) b) A B C B C A ABC cân tại A có C=B=50 ABC có A+B+C=180 A+50+50=180 A=80 ABC có A+B+C=180 70+2B=180 2B=180-70 2B=110 B=110:2 B=55 50 70
Answer:
a,
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
Mà đề ra: \(\widehat{A}=40^o\)
\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A)
\(\Rightarrow40^o+\widehat{B}+\widehat{B}=180^o\)
\(\widehat{2B}=140^o\)
\(\widehat{B}=70^o\)
\(\Rightarrow\widehat{B}=\widehat{C}=70^o\)
C B A 40 độ
b,
Theo đề ra: Tam giác ABC cân tại A
\(\Rightarrow\widehat{B}=\widehat{C}=50^o\)
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\widehat{A}+100^o=180^o\)
\(\Rightarrow\widehat{A}=80^o\)
50 độ C B A
c,
Theo đề ra: Tam giác ABC cân tại A
\(\Rightarrow\widehat{C}=\widehat{B}=60^o\)
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\widehat{A}+120^o=180^o\)
\(\Rightarrow\widehat{A}=60^o\)
C A B 60 độ
Bài 1:
Xét \(\Delta ABC\) có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)(ĐL tổng 3 góc 1 \(\Delta\))
\(\Rightarrow30^o+70^o+\widehat{C}=180^o\) (Vì \(\widehat{A}=30^o;\widehat{B}=70^o\) (gt))
\(\Rightarrow\widehat{C}=180^o-30^o-70^o=80^o\)
Bài 2:
Xét \(\Delta ABC\) (vuông tại A) có:
\(\widehat{B}+\widehat{C}=90^o\) (Tc \(\Delta\) vuông)
\(\Rightarrow\widehat{B}+40^o=90^o\) (Vì \(\widehat{C}=40^o\) (gt))
\(\Rightarrow\widehat{B}=90^o-40^o=50^o\)
Giải:
+) Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) ( 3 góc của tam giác )
\(\Rightarrow30^o+70^o+\widehat{C}=180^o\)
\(\Rightarrow\widehat{C}=80^o\)
Vậy...
+) Ta có: \(\widehat{B}+\widehat{C}=90^o\) ( do tam giác có \(\widehat{A}=90^o\) )
\(\Rightarrow40^o+\widehat{B}=90^o\)
\(\Rightarrow\widehat{B}=50^o\)
Vậy...
vì goc B tuonng ung voi goc E =>GOC B=100*
vì goc A tuong ung voi goc D => D =20*
vì goc C tuong ung voi goc G =>goc G=60*
Bài 2:
Đặt số đo góc B là x, số đo góc C là y
Theo đề, ta có:
\(\left\{{}\begin{matrix}x+y=90\\x-y=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=114\\x+y=90\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=57^0\\y=33^0\end{matrix}\right.\)
a) bạn tính \(\widehat{B}=\widehat{C}=75^0\)
b)ta có: tam giác abc cân tại A
=> bc=ab=12cm
đúng nha
happy new year!@!!!!!!!!!
( Lưu ý : hình chỉ mang tính minh họa )
Chứng minh
Ta thấy cả 2 tam giác ABD và tam giác ACD không thể cùng cân ở A ( vì AB=AD=AC, nên B,D,C nằm trên một đường tròn tâm A bán kính AB do đó B,C,D không thẳng hàng ).
Nếu cả hai tam giác ABD và ACD cùng cân ở D thì tam giác ABC sẽ vuông ở A ( Mâu thuẫn với giả thiết \(\widehat{A}\)= 750 )
Nếu tam giác ABD cân ở B thì AB=BD , tam giác ACD cân ở C thì AC=CD khi đó AB+AC=BD+DC hay AB+AC=BC ( vô lý vì trong 1 tam giác thì tổng 2 cạnh lớn hơn 1 cạnh )
Vì vậy tam giác ABD sẽ cân ở A và tam giác ACD phải cân ở D
Vì tam giác ABD cân ở A nên \(\widehat{B}=\widehat{D1}\left(tinhchat\right)\)
Vì tam giác ACD cân ở D nên \(\widehat{A1}=\widehat{C}\left(tinhchat\right)\)
Ta có \(\widehat{D1}\)là góc ngoài của tam giác ABC tại D
\(\Rightarrow\widehat{D1}=\widehat{A1}+\widehat{C}\left(tinhchat\right)\)mà \(\widehat{A1}=\widehat{C}\left(cmt\right)\)
\(\Rightarrow\widehat{D1}=2.\widehat{A1}\)mà \(\widehat{B}=\widehat{D1}\left(cmt\right)\)
\(\Rightarrow\widehat{B}=2.\widehat{A1}\)
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=\widehat{A1}+\widehat{A2}+\widehat{A1}+2.\widehat{A1}\)
\(180^0=4.\widehat{A1}+\widehat{A2}\)(1)
Lại có : \(\widehat{A1}+\widehat{A2}=75^0\)(2)
Lấy (1) trừ (2) ta được: \(3.\widehat{A1}=105^0\)
\(\widehat{A1}=35^0\)
\(\Rightarrow\widehat{C}=35^0\)( vì \(\widehat{C}=\widehat{A1}\))
Xét tam giác ABC có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)( định lý )
\(\widehat{B}=70^0\)
Vậy ...