Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do M và N lần lượt là trung điểm của BC và AC nên MN là đường trung bình của tam giác AB.
Đáp án B
A B C M N
Do M, N là trung điểm của AB và AC nên MN là đường trung bình của tam giác ABC nên MN//BC.
Do vậy hai véc tơ \(\overrightarrow{NM}\) và \(\overrightarrow{BC}\) cùng phương.
A B C D O M N
a)
Các véc tơ cùng phương với \(\overrightarrow{AB}\) là:
\(\overrightarrow{MO};\overrightarrow{OM};\overrightarrow{MN};\overrightarrow{NM};\overrightarrow{NO};\overrightarrow{ON};\overrightarrow{DC};\overrightarrow{CD};\overrightarrow{BA};\overrightarrow{AB}\).
Hai véc tơ cùng hướng với \(\overrightarrow{AB}\) là:
\(\overrightarrow{MO};\overrightarrow{ON}\).
Hai véc tơ ngược hướng với \(\overrightarrow{AB}\) là:
\(\overrightarrow{OM};\overrightarrow{ON}\).
b) Một véc tơ bằng véc tơ \(\overrightarrow{MO}\) là: \(\overrightarrow{ON}\).
Một véc tơ bằng véc tơ \(\overrightarrow{OB}\) là: \(\overrightarrow{DO}\).
a) Do A'M và BC cắt nhau tại trung điểm K của mỗi đường nên tứ giác A'BMC là hình bình hành
\(\Rightarrow MC//A'B;MC=A'B\). (1)
Tương tự ta có \(MC//AB';MC=AB'\). (2)
Từ (1) và (2) suy ra \(AB'//A'B;A'B=AB'\)
\(\Rightarrow\) Tứ giác AB'A'B là hình bình hành
\(\Rightarrow\) AA' và BB' cắt nhau tại trung điểm của mỗi đường.
Tương tự, BB' và CC' cắt nhau tại trung điểm của mỗi đường.
Vậy AA', BB', CC' đồng quy.
b) Gọi G là giao điểm của AK và MN.
\(\Delta AMA'\) có: \(\left\{{}\begin{matrix}KA'=KM\\NA=NA'\\G\in AK\cap MN\end{matrix}\right.\)
\(\Rightarrow\) G là trọng tâm của tam giác AMA'
\(\Rightarrow AG=\frac{2}{3}AK\).
\(\Delta ABC\) có: \(\left\{{}\begin{matrix}KB=KC\\G\in AK\\AG=\frac{2}{3}AK\end{matrix}\right.\)
\(\Rightarrow\) G là trọng tâm của tam giác ABC.
Vậy MN luôn đi qua trọng tâm G của tam giác ABC.