Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
DO đó:ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AC//BD
Bạn tự vẽ hình nha
a)Xét tam giác AMB và tam giác DMC ta có:
MA=MD(GT)
AMB=DMC(ĐĐ)
MB=MC(Vì M là TĐ)
\(\Rightarrow\)Tam giác AMB=Tam giác DMC(c.g.c)
b)
Xét tam giác AMC và tam giác DMB ta có:
MA=MD(GT)
AMB=DMC(ĐĐ)
MB=MC(Vì M là TĐ)
\(\Rightarrow\)Tam giác AMC=Tam giác DMB(c.g.c)
\(\Rightarrow\)MAC=MDB(Cặp góc tương ứng)
\(\Rightarrow\)AC//BD(so le trong)
Câu c đợi mk nghĩ đã
Xét tam giác AMC và tam giác DMB có:
AM = DM (gt)
AMC = DMB (2 góc đối đỉnh)
MC = MB (M là trung điểm của BC)
=> Tam giác AMC và tam giác DMB (c.g.c)
=> AC = DB (2 cạnh tương ứng) mà AC = AF (gt) => DB = AF
CAM = BDM (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => CA // BD
EAF + FAC + CAB + BAE = 3600
EAF + 900 + CAB + 900 = 3600
EAF + CAB + 1800 = 3600
EAF + CAB = 3600 - 1800
EAF + CAB = 1800
mà DBA + CAB = 1800 (2 góc trong cùng phía, AC // BD)
=> EAF = DBA
Xét tam giác EAF và tam giác ABD có:
EA = AB (gt)
EAF = ABD (chứng minh trên)
AF = BD (chứng minh trên)
=> Tam giác EAF = Tam giác ABD (c.g.c)
=> EF = BD (2 cạnh tương ứng)
a/ Xét tg ABM và tg ACM có
AB = AC ( gt)
BM = CM ( gt)
AM chung
=> tg ABM = tg ACM (ccc)
b/ ( Trên tia đối của tia MA chứ ko phải AM nha )
Xét tg AMC và tg DMB, có
MC = MB (gt)
AM = MD ( gt)
^AMC = ^BMD ( đđ )
=> tg AMC = tg DMB ( cgc)
=> AC = BD
c/ tg ABC cân tại A có AM là đường trung tuyến
=> AM cũng là đường cao
=> AD vuông góc BC (1)
Lại có AM = MD , BM = MC ( gt) (2)
Từ (1), (2) => ABCD là hình thoi
=> AB // CD
d/ Theo đề : AI // BC , AI = BC
=> ABCI là hình bình hành
=> AB // CI
Mà AB // BC ( cmt )
=> I , C ,D thẳng hàng
A X B C D M
a) Xét ΔAMB và ΔDMC có:
AM = DM ( gt )
góc AMB = DMC ( đối đỉnh)
MB = MC ( suy từ gt )
=> ΔAMB = ΔDMC ( c.g.c )
b) Xét ΔAMC và ΔDMB có:
AM = DM (GT)
AMC = DMB ( đối đỉnh )
MC = MB (SUY TỪ GT)
=> ΔAMC = ΔDMB ( c.g.c )
=> góc ACM = MBD ( 2 góc tương ứng )
mà 2 góc này ở vị trí so le trong nên AC // BD
c) Do Ax // BC nên góc HAC = ACB ( so le trong )
Xét ΔHAC và ΔBCA có:
AH = BC (gt)
góc HAC = ACB ( CM TRÊN)
AC chung
=> ΔHAC = ΔBCA (c.g.c)
=> góc HCA = CAB ( 2 góc tương ứng)
mà 2 góc này ở vị trí so le trong nên AB // HC (1)
Theo câu a ΔAMB = ΔDMC nên góc ABM = MCD ( 2 góc tương ứng )
mà 2 góc ở này ở vị trí so le trong nên AB // CD (2)
Từ (1) và (2) suy ra H, C, D thẳng hàng → đpcm
Chúc học tốt nguyễn ngọc trang
Bạn giỏi quá! Mình đi đúng hướng rồi mà đoạn sau cũng không nghĩ ra lun.
Khâm phục!
A B C D H M
Xét tam giác AMB và tan giác DMC ta có
AM= MD (gt)
BM=MC ( M là trung điểm BC)
góc AMB = góc DMC ( 2 góc đối đỉnh)
-> tam giác AMB= tam giac DMC (c-g-c)
b>
Xét tam giác AMC và tan giác DMB ta có
AM= MD (gt)
CM=MB ( M là trung điểm BC)
góc AMC = góc DMB ( 2 góc đối đỉnh)
-> tam giác AMC = tam giac DMB (c-g-c)
-< góc MAC= góc MDB ( 2 góc tương ứng)
mà 2 góc ở vi trí sole trong nên AC//BD
c)ta có
góc MAB= góc MDC (tam giac AMB=tam giác DMC)
mà 2 góc ở ví trí sole trong
nên AB//CD
Xét tam giác ABC và tam giác CHA ta có
AC=AC ( cạnh chung)
BC=AH (gt)
góc ACB= góc CAH ( 2 góc sole trong và AH//BC)
-> tam giac ABC= tam giác CHA(c-g-c)
-> góc BAC = góc ACH (2 góc tương ứng)
mà 2goc nằm ở vi trí sole trong
nên AB//CH
ta có
AB//CH (cmt)
AB//DC (cmt)
-> CH trùng DC
-> C,H,D thang hàng
cho tam giác ABC. M là trung điểm BC. MA và MD đối nhau và MA=MD. H là trung điểm AB, K là trung điểm CD.
a, CM tam giác ABM = tam giác DCM
b, CM AB=CD và AB//CD
c, cho góc BAC = 75 độ. Tính góc ACD
d,CM M là trung điểm HK
mong các bạn giải bài này hộ mình, mình đag cần gấp..thứ 2 mình kiểm tra rồi! Thanks all <3
Vẽ hình: (các đoạn thẳng bằng nhau đã kí hiệu trong hình)
A B C D M H X a) Xét ΔABM và ΔDCM có:
AM = MD (gt)
AM = BM (M là trung điểm của BC)
Góc AMB = Góc CMD (đối đỉnh)
=> ΔABM = ΔDCM (c.g.c) (đpcm)
b) Vì ΔABM = ΔDCM (cmt) => Góc BAM = góc CDM (2 góc tương ứng)
Vì Góc BAM = góc CDM mà 2 góc này ở vị trí so le trong => AB//CD (đpcm)
c) Vì Ax//BC => Góc ACB = góc CAH (2 góc so le trong)
Xét ΔABC và ΔAHC có:
AH = BC (gt)
Góc ACB = góc CAH (cmt)
Cạnh chung AC
=> ΔABC = ΔAHC (c.g.c)
Vì ΔABC = ΔAHC => Góc ACH = góc BAC (2 góc tương ứng)
Vì Góc ACH = góc BAC mà 2 góc này ở vị trí so le trong => CH//AB
Vì DC//AB và CH//AB mà 2 cạnh này cùng đi qua điểm C => DC trùng CH (tiên đề Ơ-clit về đường thẳng song song)
Vì DC trùng CH => 3 điểm H, C, D thẳng hàng (đpcm)