K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2019

Chọn đáp án D

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

* Chứng minh các tứ giác ABHF và BMFO nội tiếp.

- Từ giả thiết suy ra: Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

=> H và F thuộc đường tròn đường kính AB (quỹ tích cung chứa góc)

Vậy tứ giác ABHF nội tiếp đường tròn đường kính AB

- Gọi M là trung điểm của BC (gt), suy ra: OM ⊥ BC

Khi đó: Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Nên M, F thuộc đường tròn đường kính OB(quỹ tích cung chứa góc).

Vậy tứ giác BMOF nội tiếp đường tròn đường kính OB

* Chứng minh HE // BD.

Dễ chứng minh tứ giác ACEH nội tiếp đường tròn đường kính AC.

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Và chúng ở vị trí so le trong suy ra: HE // BD

25 tháng 5 2016

Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn tâm O. Kẻ đường cao AH của tam giác và đường kính AD của đường tròn (O). Gọi E,F lần lượt là chân đường vuông góc kẻ từ C và B xuống đường thẳng AD. Gọi M là trung điểm ÁD

a) Chứng minh tứ giác BMFO nội tiếp

b) chứng minh HE//BD

c) Chứng minh $S=\frac{AB.AC.BC}{4R}$S=AB.AC.BC4R     ( Với S là diện tích tam giác ABC, R là bán kính đường tròn (O) )

Chịu @ _@

21 tháng 6 2021

A B C E F N M O D G

1. Vì \(\widehat{ADB}=\widehat{AEB}=90^0\) nên tứ giác AEBD nội tiếp đường tròn đường kính AB.

2. Tứ giác AEBD, AFCD nội tiếp và BE, CF tiếp xúc (O), suy ra:

\(\widehat{AED}=\widehat{ABC}=\widehat{ACF}=\widehat{ADF};\widehat{AFD}=\widehat{ADE}\)

Do đó \(\Delta\)EAD ~ \(\Delta\)DAF, suy ra \(AD^2=AE.AF\)

3. Ta có \(AE.AF=\left(AM+AN\right)^2=\frac{\left(AE+AF\right)^2}{4}\Leftrightarrow\left(AE-AF\right)^2=0\Leftrightarrow AE=AF\)

Từ đó \(\Delta\)AEG = \(\Delta\)AFG (Cạnh huyền.Cạnh góc vuông), suy ra GA là phân giác góc BGC

Mà \(\Delta\)GBC cân tại G nên GA là trung trực BC hay \(\Delta\)ABC cân tại A

Vậy đường cao AD trùng với AO hay A,O,D thẳng hàng.

31 tháng 1 2019

b/ Gọi G là giao điểm của AB và DF

Ta có :

  Góc ACQ = góc AHQ ( t/g ACHQ n.t )

  Góc ACQ = góc ADF ( 2 góc n.t chắn cung AF )

=> Góc AHQ = góc ADF

Mà 2 góc ở vị trí đồng vị 

Nên \(HQ//DF\)

Mặc khác \(HQ\perp AB\)tại Q

=> \(DF\perp AB\)tại G

Xét tứ giác GBNF ta có:\(B\widehat{G}F+B\widehat{N}F=180^0\)

=> Tứ giác GBNF nội tiếp =>\(N\widehat{G}F=N\widehat{B}F\)

Mà \(N\widehat{B}F=C\widehat{A}F\)( tứ giác ACBF n.t (O))

Nên \(N\widehat{G}F=C\widehat{A}F\left(1\right)\)

Xét tứ giác GMAF ta có: \(A\widehat{M}F=A\widehat{G}F\left(=90^0\right)\)

=> Tứ giác GMAF n.t =>\(M\widehat{A}F+M\widehat{G}F=180^0\left(2\right)\)

(1) và (2) => \(N\widehat{G}F+M\widehat{G}F=180^0\)

=> \(\overline{M,G,N}\)

Mà G là giao điểm của AB và DF

Nên MN,AB,DF đồng quy tại G

MN là đường thẳng simson nha bạn

7 tháng 7 2020

khong biet

a nha

12 tháng 5 2019

\(\text{hình bn tự vẽ nha!! }\)

\(a,\text{Xét tứ giác AMHN ta có: }\)

 \(\hept{\begin{cases}\widehat{ANH}=90\\\widehat{AMH}=90\end{cases}}\)Mà trong tứ giác AMHN 2 góc đó là 2 góc đối nhau 

=> \(\widehat{ANH}+\widehat{AMH}=90+90=180\)

=> Tứ giác AMHN nội tiếp