K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2021

a. Vì ABCD là hcn nên \(AB=CD\Rightarrow\dfrac{1}{2}AB=\dfrac{1}{2}CD\Rightarrow AM=CN=BM=DN\)

Mà ABCD là hcn nên AB//CD hay AM//CN

Vậy AMCN là hbh

b. Vì AM=DN và AM//DN(AB//CD) và \(\widehat{MAD}=90^0\) nên AMND là hcn

Mà O là trung điểm MD nên O là trung điểm AN

Vậy A,O,N thẳng hàng

c. Vì BM=CN và BM//CN(AB//CD) và \(\widehat{MBC}=90^0\) nên BMNC là hcn

Mà I là trung điểm MC nên I là trung điểm BN hay MC giao BN tại I

Mà BMNC là hcn nên \(BN=MN\Rightarrow MI=IN\Rightarrow I\in\) trung trực MN

Mà AMND là hcn nên \(AN=MD\Rightarrow OM=ON\Rightarrow O\in\) trung trực MN

Vậy OI là trung trực MN hay O đx I qua MN

9 tháng 7 2016

a, Do I là trung điểm của DC

suy ra: IC=1/2DC

Mà AB=1/2DC nên AB=CI(*)

Ta có: AB//CD 

MÀ I nằm trên cạnh DC

suy ra AB//IC(**)

Từ (*);(**) suy ra tứ giác ABCI là hình bình hành

b, Chứng minh tương tự ta cũng có tứ giác ABID là hình bình hành.

c, Chứng minh tam giác bằng nhau suy ra IA=IC còn cách còn lại bạn tự làm nha dễ đấy

9 tháng 7 2016

bạn làm hộ mik lốt câu c đi.Mik chứng minh đc IA=IC rồi nhưng không biết làm gì nữa

Bài 1. Cho tứ giác ABCD. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA. Các đường chéo AC, BD của tứ giác ABCD thoả điều kiện gì thì tứ giác EFGH là: a) Hình chữ nhật. b) Hình thoi. c) Hình vuông. Bài 2. Cho tam giác...
Đọc tiếp

Bài 1. Cho tứ giác ABCD. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA. Các đường chéo AC, BD của tứ giác ABCD thoả điều kiện gì thì tứ giác EFGH là:

a) Hình chữ nhật.

b) Hình thoi.

c) Hình vuông.

Bài 2. Cho tam giác ABC cân tại A, trung tuyến AM. Gọi I là trung điểm của AC, K là điểm đối xứng của điểm M qua điểm I.

a) Tứ giác AMCK là hình gì?

b) Tứ giác AKMB là hình gì?

c) Có trường hợp nào của tam giác ABC để tứ giác AKMB là hình thoi.

ĐS: a) AMCK là hình chữ nhật b) AKMB là hình bình hành c) Không.

Bài 3. Cho tam giác ABC vuông tại A. Về phia ngoài tam giác, vẽ các hình vuông ABDE, ACGH.

a) Chứng minh tứ giác BCHE là hình thang cân.

b) Vẽ đường cao AK của tam giác ABC. Chứng minh AK, DE, GH đồng qui.

Bài 4. Cho hình thang cân ABCD với AB // CD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA.

a) Tứ giác MNPQ là hình gì?

b) Cho biết diện tích tứ giác ABCD bằng \(30m^2\). Tính diện tích tứ giác MNPQ.

Bài 5. Cho tam giác ABC vuông tại A, trung tuyến AM. Gọi D là trung điểm của AB, E là điểm đối xứng của điểm M qua điểm D.

a) Chứng minh điểm E đối xứng với điểm M qua đường thẳng AB.

b) Các tứ giác AEMC, AEBM là hình gì?

c) Cho BC = 4cm. Tính chu vi tứ giác AEBM.

d) Tam giác vuông thoả điều kiện gì thì AEBM là hình vuông.

Bài 6. Cho hình bình hành ABCD, O là giao điểm hai đường chéo. Gọi M, N lần lượt là trung điểm của các cạnh AD, BC. Các đường thẳng BM, DN cắt đường chéo AC tại P, Q.

a) Chứng minh AP = PQ = QC.

b) Tứ giác MPNQ là hình gì?

c) Xác định tỉ số \(\frac{CA}{CD}\) để MPNQ là hình chữ nhật.

d) Xác định góc ACD để MPNQ là hình thoi.

e) Tam giác ACD thoả mãn điều kiện gì để MPNQ là hình vuông.

Bài 7. Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Vẽ đường thẳng qua B song song với AC, đường thẳng qua C song song với BD, hai đường thẳng đó cắt nhau ở K.

a) Tứ giác OBKC là hình gì?

b) Chứng minh AB = OK.

c) Tìm điều kiện của hình thoi ABCD để OBKC là hình vuông.

ĐS: a) OBKC là hình chữ nhật c) ABCD là hình vuông.

Bài 8. Cho hình bình hành ABCD có BC = 2AB và góc A =600. Gọi E, F lần lượt là trung điểm của BC và AD.

a) Tứ giác ECDF là hình gì?

b) Tứ giác ABED là hình gì?

c) Tính số đo của góc AED.

Bài 9. Cho hình thang ABCD (AB // CD). Gọi E, F theo thứ tự là trung điểm của AB, CD. Gọi O là trung điểm của EF. Qua O vẽ đường thẳng song song với AB, cắt AD và BC theo thứ tự tại M và N.

a) Tứ giác EMFN là hình gì?

b) Hình thang ABCD có thêm điều kiện gì để EMFN là hình thoi.

c) Hình thang ABCD có thêm điều kiện gì để EMFN là hình vuông.

Bài 10. Cho tam giác ABC vuông tại A với AB = AC = a.

a) Lấy điểm D trên cạnh AC và điểm E trên cạnh AB sao cho AD = AE. Các đường thẳng vuông góc với EC vẽ từ A và D lần lượt cắt cạnh BC ở K và L. Chứng minh BK = KL.

b) Một hình chữ nhật APMN thay đổi có đỉnh P trên cạnh AB, đỉnh N trên cạnh AC và có chu vi luôn bằng \(2a\). Điểm M di chuyển trên đường nào?

c) Chứng minh khi hình chữ nhật APMN thay đổi thì đường vuông góc vẽ từ M xuống đường chéo PN luôn đi qua một điểm cố định.

ĐS: b) M di chuyển trên cạnh BC c) HM đi qua điểm I cố định (với ACIB là hình vuông).

Bài 11. Cho hình vuông ABCD. E là điểm trên cạnh DC, F là điểm trên tia đối của tia BC sao cho BF = DE.

a) Chứng minh tam giác AEF vuông cân.

b) Gọi I là trung điểm của EF. Chứng minh I thuộc BD.

c) Lấy điểm K đối xứng với A qua I. Chứng minh tứ giác AEKF là hình vuông.

Bài 12. Cho hình bình hành ABCD có AD = 2AB, góc A=600. Gọi E và F lần lượt là trung điểm của BC và AD.

a) Chứng minh AE\(\perp\)BF.

b) Chứng minh tứ giác BFDC là hình thang cân.

c) Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.

d) Chứng minh ba điểm M, E, D thẳng hàng.

Bài 13. Cho tam giác ABC vuông tại A có \(\widehat{BAC}=\)900. Kẻ tia Ax song song với BC. Trên Ax lấy điểm D sao cho AD = DC.

a) Tính số đo các góc BAD, DAC

b) Chứng minh tứ giác ABCD là hình thang cân.

c) Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.

Bài 14. Cho ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Gọi K là giao điểm của AC và DM, L là trung điểm của BD và CM.

a) Tứ giác MNPQ là hình gì?

b) Tứ giác MDPB là hình gì?

c) Chứng minh: AK = KL = LC.

Bài 15. Cho hình bình hành ABCD có AB = 2AD. Gọi E, F thứ tự là trung điểm của AB và CD.

a) Các tứ giác AEFD, AECF là hình gì?

b) Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE. Chứng minh rằng tứ giác EMFN là hình chữ nhật.

c) Hình bình hành ABCD nói trên có thêm điều kiện gì để EMFN là hình vuông?

Bài 16. Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M qua AB, E là giao điểm của MH và AB. Gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK và AC.

a) Xác định dạng của tứ giác AEMF, AMBH, AMCK.

b) Chứng minh rằng H đối xứng với K qua A.

c) Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông?

23
15 tháng 12 2016

bạn có nikc face ko. vô đó mk gửi bài qua cho

28 tháng 7 2017

Bài 1: Giải: Xét tam giác ACD có F,G lần lượt là trung điểm AC,DC nên FG là đường trung bình
\(\Rightarrow\)\(FG//AD\)
C/m tương tự đc \(EH//AD; GH//EF//BC\)
\(\Rightarrow EFGH\) là hình bình hành
a/Để EFGH là hình chữ nhật thì góc \(FGH=90^o\)
\(\Rightarrow góc HGD+góc FGC=90^o\)
Mà góc HGD=góc BCD;góc FGC= góc ADC ( góc đồng vị = nhau)
\(\Rightarrow\) góc BCD+góc ADC=\(90^o\)
\(\Rightarrow\)Để EFGH là hình chữ nhật thì tứ giác ABCD cần có góc BCD+góc ADC=\(90^o\)
b/Để EFGH là hình thoi thì FG=HG
Mà FG=1/2AD; HG=1/2BC
\(\Rightarrow\)AD=BC
\(\Rightarrow\)Để EFGH là hình thoi thì tứ giác ABCD có AD=BC
c/ để EFGH là hình vuông thì EFGH phải vừa là hình chữ nhật vừa là hình thoi\(\Rightarrow \)ABCD phải có đủ cả 2 điều kiện trên

4 tháng 12 2016
Bài 1
a) Xét tam giác BCD có BM=MD(gt), BN=NC(gt) => MN là đg` TB => MN// DC => MN// DE(1)
và MN=1/2DC => MN= DE(2)
từ (1)và (2) => MNED là hbh

b) MNED là hbh(câu a) => MD//NE => ADM= DEN(đồng vị)
Xét tam giác ABD vg tại A có BM=DM=> AM là trung tuyến => AM=1/2BD= MD
=> tam giác ADM cân tại M => MDA = DAM
=> DEN= MAD (3)
MN//DE=> MN//AE => AMNE là hình thang (4)
từ (3)và (4) => AMNE là hình thang cân

c) để MNED là hình thoi \Leftrightarrow MNED là hbh có MD=DE \Leftrightarrow 1/2BD=1/2CD \Leftrightarrow BD = CD \Leftrightarrow tam giác BCD cân tại D \Leftrightarrow DBC=góc C \Leftrightarrow góc C=1/2góc B\Leftrightarrow góc C=2góc B
Vậy để MNED là hình thoi thì tam giác ABC có góc C=2góc B
 
 
1 tháng 12 2016
  1. Bài 1
    a) Xét tam giác BCD có BM=MD(gt), BN=NC(gt) => MN là đg` TB => MN// DC => MN// DE(1)
    và MN=1/2DC => MN= DE(2)
    từ (1)và (2) => MNED là hbh

    b) MNED là hbh(câu a) => MD//NE => ADM= DEN(đồng vị)
    Xét tam giác ABD vg tại A có BM=DM=> AM là trung tuyến => AM=1/2BD= MD
    => tam giác ADM cân tại M => MDA = DAM
    => DEN= MAD (3)
    MN//DE=> MN//AE => AMNE là hình thang (4)
    từ (3)và (4) => AMNE là hình thang cân

    c) để MNED là hình thoi \Leftrightarrow MNED là hbh có MD=DE \Leftrightarrow 1/2BD=1/2CD \Leftrightarrow BD = CD \Leftrightarrow tam giác BCD cân tại D \Leftrightarrow DBC=góc C \Leftrightarrow góc C=1/2góc B\Leftrightarrow góc C=2góc B
    Vậy để MNED là hình thoi thì tam giác ABC có góc C=2góc B
     
    nhuquynhdat, 17 Tháng mười hai 2013
    #2
     
  2. nhuquynhdat

    nhuquynhdatGuest

     

    bài 2

    a) AB//CD => AB//CE(1)
    Xét tam giác ADE có AH là đg` cao
    lại có E đối xứng với D qua H => H là trung điểm của DE => AH là trung tuyến
    => tam giác ADE cân tại A
    => ADE=AED(goác đáy tam giác cân)
    mặt khác ABCD là hình thang cân => ADC=góc C
    => góc C= AED
    mà 2 góc này ở vị trí đồng vị của AE và BC => AE//BC(2)
    từ (1)và (2) => ABCE là hbh

    b) xét tam giác AHE và tam giác FHD có góc AHE=góc DHF(đối đỉnh)
    DH=HE(gt)
    AE//DF(gt)=> AEH=FDH(SLT)
    =>tam giác AHE=tam giác FHD(gcg) => AH=HF => H là TĐ của AF

    c) Ta có AH=HF(câu b)DH=HE(gt) => ADFE là hbh
    mà AH vg góc với ED=> AF vg góc với ED => ADEF là hình thoi
    lại có tam giác ADE cân tại A (câu a)=> AD=AE => ADEF là hình vg

3 tháng 3 2020

A B C O D H P Q I

a. Xét tứ giác ADOH có:\(\widehat{ODA}=90^o;\widehat{DAH}=90^o;\widehat{OHA}=90^o\)

\(\Rightarrow\) ADOH là hình chữ nhật ( tứ giác có 3 góc vuông )

b. Ta có: P là điểm đối cứng của D qua O ⇒ O là trung điểm của DP(1)

Q là điểm đối xứng của H qua O ⇒ O là trung điểm của QH(2)

Ta có: \(AB\perp AC;QH\perp AC̸\) ⇒ AB//QH

Lại có: DB//QO;DB⊥DP⇒QH⊥DP(3)

Từ(1),(2),(3)⇒Tứ giác QDHP là hình thoi(Tứ giác có 2 đường chéo vuông góc và cắt nhau tại trung điểm mỗi đường)

12 tháng 1 2017

Bạn tự vẽ hình nha !

a) Theo đề, ta có:

N là điểm đối xứng với M qua I

mà I là trung điểm của AC hay I thuộc AC

=> N đối xứng với M qua AC.

b) Xét tam giác ABC có:

BM = CM (gt)

AI = CI (gt)

=> MI là đường trung bình của tam giác ABC

=> MI//AB

mà AB vuông góc với AC

=> MI vuông góc AC

Xét tứ giác ANCM có:

MI = NI (gt)

AI = CI (gt)

=> tứ giác ANCM là hình bình hành có MI vuông góc với AC

=> ANCM là hình thoi

c) Hình thoi ANCM là hình vuông khi đường chéo AM là phân giác của góc A

Tam giác ABC có AM vừa là phân giác vừa là trung tuyến nên tam giác ABC cân tại A .

Vậy điều kiện để ANCM là hình vuông là tam giác ABC vuông cân tại A.

XONG!!! okok

10 tháng 8 2019
https://i.imgur.com/CZOvrYZ.jpg
11 tháng 8 2019

Cảm ơn bạn nhiều