K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2018

\(x^{15}-\left(7+1\right)x^{14}+\left(7+1\right)x^{13}....+\left(7+1\right)x-5\)

\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}....+\left(x+1\right)x-5\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}....-x^3-x^2+x^2+x-5\)

\(=x-5=7-5=2\)

27 tháng 2 2016

ai ma biet

27 tháng 5 2018

6 tháng 10 2015

ta  tính \(y'=6x^2+a-12\)

để hàm số vừa có cực đại và cực tiểu thì \(y'=0\) hai nghiệm phân biệt suy ra \(6x^2+a-12=0\Leftrightarrow6x^2=12-a\) (*)

để (*) có 2 nghiệm phân biệt thì \(12-a>0\Leftrightarrow a<12\)

vậy với a<12 thì hàm số có cực đại và cực tiểu

gọi \(x_1;x_2\) là cực đại và cực tiểu của hàm số

suy ra \(x_{1,2}=\pm\sqrt{\frac{12-a}{6}}\) ta thay vào hàm số suy ra đc \(y_{1,2}\) suy ra \(I\left(x_1;y_1\right);A\left(x_2;y_2\right)\)

sử dụng công thức tính khoảng cách

pt đường thẳng y có dạng x=0

ta có \(d\left(I;y\right)=\frac{\left|x_1\right|}{\sqrt{1}}\)\(d\left(A;y\right)=\frac{\left|x_2\right|}{\sqrt{1}}\)

\(d\left(I,y\right)=d\left(A,y\right)\) giải pt ta tìm ra đc a

15 tháng 12 2019

18 tháng 6 2019

Đáp án D

13 tháng 12 2019

Đáp án A.

 

Áp dụng bđt Bunhiacopski:

P=6+4=10.

18 tháng 9 2018

4 tháng 7 2017


10 tháng 1 2019

Đáp án A.

Gọi M x , y  là điểm biểu diễn số phức z.

Từ giả thiết, ta có z − 4 − 3 i = 5 ⇔ x − 4 2 + y − 3 2 = 5 ⇒ M  thuộc đường tròn (C) tâm I 4 ; 3 ,  bán kính R = 5 .  Khi đó P = M A + M B ,  với A − 1 ; 3 , B 1 ; − 1 .

Ta có

P 2 = M A 2 + M B 2 + 2 M A . M B ≤ 2 M A 2 + M B 2 .

Gọi E 0 ; 1  là trung điểm của AB

⇒ M E 2 = M A 2 + M B 2 2 − A B 2 4 .

Do đó P 2 ≤ 4 M E 2 + A B 2  mà

M E ≤ C E = 3 5   s u y   r a   P 2 ≤ 4. 3 5 2 + 2 5 2 = 200.

Với C là giao điểm của đường thẳng EI

với đường tròn (C).

Vậy P ≤ 10 2 .  Dấu “=” xảy ra 

⇔ M A = M B M = C ⇒ M 6 ; 4 ⇒ a + b = 10.