K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2018

\(\Delta'=m^2-\left(m-1\right)\left(m+1\right)=m^2-m^2+1=1>0\)
=> Phương trình luôn có nghiệm vs mọi m

1 tháng 6 2018

a) đen-ta phẩy: (-m)^2 - (m-1)(m+1) = 1

Để phương trình luôn có nghiệm thì đen- ta phẩy phải lớn hơn hoặc bằng 0

=> 1>0

=> phương trình luôn có nghiệm

b) tích 2 nghiệm bằng 5 

=> m + 1 =5 => m=4

Tổng của 2 nghiệm là: -2*4=-8

5 tháng 2 2020

a) Tam thức bậc hai có \(\Delta'=m^2-m+4=m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+4=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\).

Suy ra phương trình (1) luôn có nghiệm với mọi m.

b) Theo Vi-et ta có:

\(x_1+x_2=2m,x_1.x_2=m-4\)

Điều kiển để \(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)

   \(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1x_2}\)

    \(\Leftrightarrow x_1+x_2=\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{x_1x_2}\)

   \(\Leftrightarrow2m=\frac{\left(2m\right)^3-3\left(m-4\right).2m}{m-4}\)

  \(\Leftrightarrow2m\left(m-4\right)=8m^3-6m^2+8m\) và \(m\ne4\)

  \(\Leftrightarrow4m\left(2m^2-2m+3\right)=0\) và \(m\ne4\)

  \(\Leftrightarrow m=0\)

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Lời giải:

a) Khi $m=1$ thì pt trở thành:

$x^2-2x-5=0$

$\Leftrightarrow (x-1)^2=6$

$\Rightarrow x=1\pm \sqrt{6}$ 

b) Để $x_1=3$ là nghiệm của pt thì:

$3^2-2.m.3+2m-7=0\Leftrightarrow m=\frac{1}{2}$

Nghiệm còn lại $x_2=(x_1+x_2)-x_1=2m-x_1=2.\frac{1}{2}-3=-2$

c) 

$\Delta'= m^2-(2m-7)=(m-1)^2+6>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm phân biệt $x_1,x_2$

Theo định lý Viet: $x_1+x_2=2m$ và $x_1x_2=2m-7$

Khi đó: 

Để $x_1^2+x_2^2=13$

$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=13$

$\Leftrightarrow (2m)^2-2(2m-7)=13$

$\Leftrightarrow 4m^2-4m+1=0\Leftrightarrow (2m-1)^2=0\Leftrightarrow m=\frac{1}{2}$

d) 

$x_1^2+x_2^2+x_1x_2=(x_1+x_2)^2-x_1x_2$

$=(2m)^2-(2m-7)=4m^2-2m+7=(2m-\frac{1}{2})^2+\frac{27}{4}\geq \frac{27}{4}$
Vậy $x_1^2+x_2^2+x_1x_2$ đạt min bằng $\frac{27}{4}$. Giá trị này đạt tại $m=\frac{1}{4}$

 

19 tháng 4 2021

a) Với m=1,ta có:

x2-2.1.x+2.1-2=0

<=> x2-2x=0

<=> x(x-2)=0

<=> x=0 hoặc x-2=0

<=> x=0 hoặc x=2

a) Thay \(m=2\) vào phương trình, ta được:

 \(x^2-4x+1=0\) \(\Leftrightarrow x=2\pm\sqrt{3}\)

  Vậy ...

b) Ta có: \(\Delta'=m^2-m+1=\left(m-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt 

b) Ta có: \(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot\left(m-1\right)=4m^2-4m+4=\left(2m-1\right)^2\ge0\forall m\)

nên phương trình luôn có nghiệm với mọi m

8 tháng 7 2021

a) Ta có: \(\Delta'=\left(-m\right)^2+m+1=m^2+m+1=\left(m+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

=> pt luôn có 2 nghiệm phân biệt

Theo hệ thức viet, ta có: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-m-1\end{cases}}\)

Theo bài ra, ta có: \(\hept{\begin{cases}S=2x_1+3x_2+3x_1+2x_2=5\left(x_1+x_2\right)=5.2m=10m\\P=\left(2x_1+3x_2\right)\left(3x_1+2x_2\right)=6x_1^2+13x_1x_2+6x_2^2=6\left(x_1+x_2\right)^2+x_1x_2\end{cases}}\)

\(\hept{\begin{cases}S=10m\\P=6.\left(2m\right)^2-m-1=24m^2-m-1\end{cases}}\)

Hai nghiệm 2x1 + 3x2 và 3x1 + 2x2 là nghiệm của pt \(x^2-10mx+24m^2-m-1=0\)

b) Theo bài ra, ta có:

\(\left|2x_1+3x_2\right|+\left|3x_1+2x_2\right|=30\)

<=> \(\left(2x_1+3x_2\right)^2+\left(3x_1+2x_2\right)^2+2\left|\left(2x_1+3x_2\right)\left(3x_1+2x_2\right)\right|=900\)

<=> \(\left(2x_1+3x_2+3x_1+2x_2\right)^2-2\left(2x_1+3x_2\right)\left(3x_1+2x_2\right)+2\left|24m^2-m-1\right|=900\)

<=> \(\left(10m\right)^2-2\left(24m^2-m-1\right)+2\left|24m^2-m-1\right|=900\)

<=> \(52m^2+2m+2+2\left|24m^2-m-1\right|=900\)

<=> \(\left|24m^2-m-1\right|=449-26m^2-m\)

<=> \(\orbr{\begin{cases}24m^2-m-1=449-26m^2-m\left(đk:m\ge\frac{1+\sqrt{97}}{48}hoặcx\le\frac{1-\sqrt{97}}{48}\right)\\24m^2-m-1=26m^2+m-449\left(đk:\frac{1-\sqrt{97}}{48}\le x\le\frac{1+\sqrt{97}}{48}\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}50m^2=1\\2m^2+2m-448=0\end{cases}}\)<=> \(\orbr{\begin{cases}m=\pm\frac{1}{5\sqrt{2}}\\m^2+m-224=0\end{cases}}\) (\(\orbr{\begin{cases}m=\frac{1}{5\sqrt{2}}\left(ktm\right)\\m=-\frac{1}{5\sqrt{2}}\left(tm\right)\end{cases}}\))

<=> \(m^2+m-224=0\)(có 2 nghiệm ko thõa mãn -> tự tính)

8 tháng 7 2021

a) \(\Delta'=m^2+m+1>0\forall m\). Do đó phương trình cho luôn có hai nghiệm phân biệt

Khi đó, theo hệ thức Viet: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-m-1\end{cases}}\)

Suy ra \(\hept{\begin{cases}5\left(x_1+x_2\right)=10m\\\left(2x_1+3x_2\right)\left(3x_1+2x_2\right)=6\left(x_1+x_2\right)^2+x_1x_2=24m^2-m-1\end{cases}}\)

Áp dụng định lí Viet đảo ta có được phương trình:

\(X^2-10mX+24m^2-m-1=0\left(1\right)\) nhận \(2x_1+3x_2\) và \(3x_1+2x_2\) làm nghiệm.

b) Để \(\left(1\right)\) có nghiệm thì \(100m^2\ge4\left(24m^2-m-1\right)\Leftrightarrow4m^2+4m+4\ge0\left(đ\right)\)

Ta có \(\left|X_1\right|+\left|X_2\right|=30\Leftrightarrow\left(X_1+X_2\right)^2-2X_1X_2+2\left|X_1X_2\right|-900=0\)

\(\Rightarrow100m^2-2\left(24m^2-m-1\right)+2\left|24m^2-m-1\right|+900=0\)

+) Nếu \(24m^2-m-1\ge0\) thì \(100m^2+900=0\Leftrightarrow m=\pm3\)

+) Nếu \(24m^2-m-1< 0\) thì \(4m^2+4m+904=0\)(Vô nghiệm)

Vậy \(m=\pm3.\)

10 tháng 8 2017

a. Với \(m=-1\)ta có phương trình \(x^2+2x-8=0\Leftrightarrow\left(x+4\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=-4\\x=2\end{cases}}\)

Vậy với \(m=-1\)thì phương trình có 2 nghiệm \(x=-4;x=2\)

b. Ta có \(\Delta=\left(2m\right)^2-4\left(m-7\right)=4m^2-4m+28=\left(4m^2-4m+1\right)+27\ge27\forall m\)

Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m

c. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m-7\end{cases}}\)

Để \(\frac{1}{x_1}+\frac{1}{x_2}=16\Leftrightarrow\frac{x_1+x_2}{x_1.x_2}=16\Leftrightarrow\left(x_1+x_2\right)^2=256x_1.x_2\)

\(\Leftrightarrow4m^2=256\left(m-7\right)\Leftrightarrow4m^2-246m+1792=0\Leftrightarrow\orbr{\begin{cases}m=8\\m=56\end{cases}\left(tm\right)}\)

Vậy với \(m=8\)hoặc \(m=56\)thì \(\frac{1}{x_1}+\frac{1}{x_2}=16\)

31 tháng 5 2017

Phương trình có :\(\Delta^'=m^2+1\ge1\)nên phương trình luôn có hai nghiệm phân biệt , mặt khác theo viet:

\(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-1\end{cases}}\)do hai nghiệm của phương trình có tích là -1 nên phương trình luôn có hai nghiệm trái dấu với mọi m