Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x = 1 vào phương trình (3x + 2k – 5)(x – 3k + 1) = 0, ta có:
(3.1 + 2k – 5)(1 – 3k + 1) = 0
⇔ (2k – 2)(2 – 3k) = 0 ⇔ 2k – 2 = 0 hoặc 2 – 3k = 0
2k – 2 = 0 ⇔ k = 1
2 – 3k = 0 ⇔ k = 2/3
Vậy với k = 1 hoặc k = 2/3 thì phương trình đã cho có nghiệm x = 1
a) Thay k = 0 vào ta có pt: 9x2 - 25 = 0 nên x = 5/3 hoặc x = -5/3
b) Để pt nhận x = -1 làm nghiệm thì: 9 - 25 - k2 + 2k = 0 tương đương - k2 + 2k - 16 =0
Mặt khác - k2 + 2k - 16 = - ( k2 - 2k + 16) = -[(k - 1)2 + 15] < 0
Suy ra không có giá trị nào của k thỏa mãn yêu cầu bài toán
a,Với k =0 thì biểu thức bằng:
4x3-25=0 hay 4x3 = 25 nên x=\(\sqrt[3]{\frac{25}{4}}\)
b,Với k =(-3) thì biểu thức bằng:\(4x^3-25+9-12x=0\)
hay :\(4x^3-12x=16\)
\(4x\left(x^2-3\right)=16\)
\(x^2-3=\frac{4}{x}\) nên suy ra \(\left(x^2-3\right):\frac{4}{x}=1\)
hay \(x^3-3x=4\)
nên nếu với x là một số tự nhiên thì phương trình vô nghiệm
a) do x=-2 l;à nghiệm của Pt nên ta thay vào PT . Ta được:
-8+4a+8-4=0
<=> a= 1
vậy a=1
b) với a =1 thay vào PT ta được pT trở thành :
\(x^3+x^2-4x-4=0\)
<=> \(x^3+2x^2-x^2-2x-2x-4=0\)
<=> \(x^2\left(x+2\right)-x\left(x+2\right)-2\left(x+2\right)=0\)
<=> \(\left(x+2\right)\left(x^2-x-2\right)=0\)
<=>\(\left(x+2\right)\left(x+1\right)\left(x-2\right)=0\)
<=>\(\left[\begin{array}{nghiempt}x+2=0\\x-2=0\\x+1=0\end{array}\right.\)<=>\(\left[\begin{array}{nghiempt}x=2\\x=-2\\x=-1\end{array}\right.\)
vậy nghiệm còn lại là -1 và 2
a ) Số a phải thõa mãn điều kiện \(\left(-2\right)^3+a\left(-2\right)^2-4\left(-2\right)-4=0\)
\(\Rightarrow a=1\)
b ) Với \(a=1\) , ta có phương trình \(x^3+x^2-4x-4=0\)
Ta phân tích vế trái của phương trình thành tích như sau :
\(x^3+x^2-4x-4=\left(x^3+x^2\right)-\left(4x+4\right)=x^2\left(x+1\right)-4\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-4\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)\)
Đáp số : \(S=\left\{-1;-2;2\right\}\)
Mình chỉ hướng dẫn như vậy thôi .
Với k = 1, ta có phương trình:
(3x – 3)(x – 2) = 0 ⇔ 3x – 3 = 0 hoặc x – 2 = 0
3x – 3 = 0 ⇔ x = 1
x – 2 = 0 ⇔ x = 2
Vậy phương trình có nghiệm x = 1 hoặc x = 2
Với k = 2/3 , ta có phương trình:
(3x - 11/3 )(x – 1) = 0 ⇔ 3x - 11/3 = 0 hoặc x – 1 = 0
3x - 11/3 = 0 ⇔ x = 11/9
x – 1 = 0 ⇔ x = 1
Vậy phương trình có nghiệm x = 11/9 hoặc x = 1.