K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2016

Ta có: \(\frac{6n+5}{2n-1}=\frac{\left(6n-3\right)+8}{2n-1}=\frac{6n-3}{2n-1}+\frac{8}{2n-1}=2+\frac{8}{2n-1}\)

Để A có giá trị nguyên thì 8/2n-1 cũng phải là số nguyên

\(\Rightarrow2n-1\in\text{Ư}\left(8\right)\)

\(\Rightarrow\) \(2n-1\in\) {-8;-4;-2;-1;1;2;4;8}

Mà 2n - 1 lẻ nên 2n - 1 \(\in\) {-1;1}

\(\Rightarrow\) n \(\in\) {0;1}

13 tháng 5 2016

Bạn có thể giải thích chặt chẽ hơn dc không!

15 tháng 7 2016

a) \(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\) nguyê

<=> n - 4 \(\in\) Ư(21) = {-21; -7; -3; -1; 1; 3; 7; 21}

<=> n \(\in\) {-17; -3; 1; 3; 5; 7; 11; 25}

Bạn tự tính giá trị với mỗi n

b) Tương tự

15 tháng 7 2016

Thank you các bạn nha !

15 tháng 11 2023

Vũ™©®×÷|

19 tháng 6 2018

Để \(\frac{3n+9}{n-4}\)thì tử phải chia hết cho mẫu hay mẫu phải thuộc ước của từ.Ta tìm điều kiện thích hợp :

\(3n+9⋮n-4\Leftrightarrow3n-12+21⋮n-4\)

\(\Rightarrow3\left(n-4\right)+21⋮n-4\)

\(3\left(n-4\right)⋮n-4\Rightarrow21⋮n-4\)

\(\Leftrightarrow n-4\inƯ\left(21\right)=\left\{1,3,7,21,-1,-3,-7,-21\right\}\)

Rồi bạn lập bảng rồi tính giá trị ra

Tương tự câu b

\(6n+5=6n-1+6⋮6n-1\)

\(6n-1⋮6n-1\Rightarrow6⋮6n-1\)

19 tháng 6 2018

a ) Để 3n + 9 / n -4 là số nguyên thì 3n + 9 chia hết cho n - 4

                                                           hay 3n - 4 + 13 chia hết cho n - 4

                                                           nên 13 chia hết cho n - 4 ( vì 3n - 4 chia hết cho n - 4 )

                                                            do đó n - 4 thuộc Ư( 13) = { -13;-1;1;13}

                                                           hay n thuộc { -9;3;5;17}

Vậy n thuộc { -9;3;5;17}

b) Để 6n + 5 / 6n - 1 là số nguyên thì 6n + 5 chia hết cho 6n - 1

hay 6n -1 + 6 chia hết cho 6n - 1

nên 6 chia hết cho 6n - 1 ( 6n - 1 chia hết cho 6n - 1)

do đó 6n - 1 thuộc Ư(6) = { -6;-3;-2;-1;1;2;3;6}

xét các trường hợp được n = 0

Vậy n = 0

20 tháng 4 2021

\(A=\frac{2n+5}{n+3}=\frac{2n+6-1}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)

Để A nguyên thì 1/n+3 nguyên

hay n + 3 thuộc Ư(1) = { 1 ; -1 ]

=> n thuộc { -2 ; -4 } thì A nguyên

19 tháng 7 2015

a, để B là số nguyên thì 6n+7 chia hết cho 2n+3

=> 6n+9-2 chia hết cho 2n+3

Vì 6n+9 chia hết cho 2n+3

=> 2 chia hết cho 2n+3

Mà 2n+3 lẻ

=> 2n+3 thuộc ước lẻ của 2

2n+3n
1-1
-1-2    

KL: n\(\in\){-1; -2}

22 tháng 4 2019

\(A=\frac{2n+5}{n+3}=\frac{2n+6-1}{n+3}=2-\frac{1}{n+3}\)

Để A có giá trị là số nguyên 

=> 1 chia hết cho n + 3

=> \(n+3\inƯ\left(1\right)\)

=> \(n+3\in\left\{1;-1\right\}\)

=> \(n\in\left\{-2;-4\right\}\)

Vậy A có giá trị là số nguyên khi n = -2 hoặc n = -4

22 tháng 4 2019

để A nguyên \(\Rightarrow2n+5⋮n+3\)

\(\Rightarrow\left(2n+6\right)-1⋮n+3\)

\(\Rightarrow n+3\text{là}Ư_1\in\left\{\pm1\right\}\)

Ta có bảng sau
\(n+3\)1-1
\(n\)-2-4

      Vậy \(n\in\left\{-2;-4\right\}\)

a) Để A có giá trị nguyên thì \(3n+9⋮n-4\)

\(\Rightarrow3n-9-3.\left(n-4\right)⋮n-4\)

\(\Rightarrow3n-9-3n+12⋮n-4\)

\(\Rightarrow3⋮n-4\Rightarrow n-4\inƯ\left(3\right)\)

\(\Rightarrow n-4\in\left\{-1;-2;-4;1;2;4\right\}\)

\(\Rightarrow n\in\left\{3;2;0;5;6;8\right\}\)

b) Để B có giá trị nguyên thì \(6n+5⋮2n-1\)

\(\Rightarrow6n+5-3.\left(2n-1\right)⋮2n-1\)

\(\Rightarrow6n+5-6n+3⋮2n-1\)

\(\Rightarrow8⋮2n-1\Rightarrow2n-1\inƯ\left(8\right)\)

Mà 2n - 1 là số lẻ \(\Rightarrow2n-1\in\left\{-1;1\right\}\)

\(\Rightarrow n\in\left\{0;1\right\}\)

8 tháng 6 2019

* Để A có giá trị nguyên thì 3n + 9 chia hết cho n - 4 

Có 3n + 9 = 3. ( n - 4 ) + 21 chia hết cho n - 4 

Mà 3. ( n - 4 ) chia hết cho n - 4  

     3 . ( n - 4 ) + 21 chia hết cho n - 4  <=> 21 chia hết cho n - 4 

=> n - 4 thuộc U ( 21 ) = { 1 ; 3 ; 7 ; 21 } 

n - 4 = 1 => n = 5 

n - 4 = 3 => n = 7 

n - 4 = 7 => n = 11 

n - 4 = 21 => n = 25 

Vậy n = { 5 ; 7 ; 11 ; 25 }