Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
+ Mạch RLC nối tiếp khi có cộng hưởng thì Z = R => vẫn tiêu thụ điện => (4) sai.
Có 3 phát biểu đúng
Áp dụng: \(P=\dfrac{U^2}{R}\cos^2\varphi\)
\(\Rightarrow 160=\dfrac{U^2}{R}.0,4^2\) (1)
\(340=\dfrac{U^2}{R}.\cos^2\varphi\) (2)
Lấy (1) chia (2) vế với vế ta tìm đc \(\cos\varphi = 0,6\)
\(P_1=UI.cos\varphi=\frac{U^2.R}{Z.R}.cos\varphi=\frac{U^2}{R}.cos\varphi^2_1\)
\(P_2=UI.cos\varphi=\frac{U^2.R}{Z.R}.cos\varphi=\frac{U^2}{R}.cos\varphi^2_2\)
\(cos\varphi_2=0,6\)
đáp án B
Công suất tiêu thụ của mạch gồm R và r là:
\(P=I^2\left(R+r\right)\)
Lúc sau: \(P'=\frac{U^2.R^2}{R^2_2+Z^2_C}=\frac{U^2.R^2}{R^2_2+R_1R_2}=\frac{U^2}{R_1+R_2}=P=85W\)
R1 + R2 = U2/P => U=120 V
R1R2 =(ZL-ZC)2=5184
Cos$1 = R1/(R12+R1R2)0.5=0.6
Cos$2=R2/(R22+R1R2)0.5=0.8
\(P_1 = P_2 <=> I_1^2R = I_2^2 R\)
<=> \(\frac{U^2}{Z_1^2} R = \frac{U^2}{Z_2^2}R\)
<=> \(Z_1^2 = Z_2^2\)
<=> \(R^2 +(Z_L-Z_{C1})^2 = R^2 +(Z_L-Z_{C2})^2\)
<=> \((Z_L-Z_{C1})^2 =(Z_L-Z_{C2})^2 \)
Mà \(Z_{C1} \neq Z_{C2}\) => \(Z_L - Z_{C1} = -(Z_L-Z_{C2})\)
=> \(Z_L = \frac{Z_{C1}+Z_{C2}}{2} \)
mà công suất của mạch cực đại khi \(Z_L = Z_C => Z_C = \frac{Z_{C_1}+Z_{C_2}}{2}\)
=> \(\frac{1}{C\omega} = \frac{1}{2}(\frac{1}{C_1\omega}+\frac{1}{C_2\omega} )\)
=> \(\frac{1}{C} = \frac{1}{2}(\frac{1}{C_1}+\frac{1}{C_2} ) = \frac{1}{2} (\frac{\pi}{2.10^{-4}}+\frac{3\pi}{2.10^{-4}})\)
=> \(C = \frac{10^{-4}}{\pi} F.\)
Đáp án A
+ Mạch RLC nối tiếp khi có cộng hưởng thì Z=R vẫn tiêu thụ điện -> (4) sai.
-> Có 3 phát biểu đúng