Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
+ Gọi M, N lần lượt là trung điểm của AB và CD; O, O’ là tâm 2 đáy O O ' ⇒ I = O O ' ∩ M N
I M = 1 2 M N = a 2 ; c o s 45 ° = O ' M I M ⇒ O ' M = a 2 4
⇒ O ' I = a 2 4 ⇒ O O ' = 2 O ' I = a 2 4 = h
O ' A = O ' M 2 + A M 2 = a 2 4 2 + a 2 4 = a 6 4 = R
⇒ V = π R 2 h = π . 6 a 2 16 . a 2 2 = 3 π a 3 2 16
Xét đường thẳng ∆ đi qua điểm O và vuông gó với mặt phẳng (P). Gọi l là đưởng thẳng đi qua M0 ε (C) và l vuông góc với (P). Do đó l // ∆. Quay mặt phẳng (Q) tạo bởi l và ∆ quanh đường thẳng ∆, thì đường thẳng l vạch lên một mặt trụ tròn xoay. Mặt trụ này chứa tất cả những đường thẳng đi qua các điểm M ε (C) và vuông góc với (P). Trục của mặt trụ là ∆ và bán kính của trụ bằng r.
Đáp án C
Gọi cạnh của hình lập phương bằng a
(R là bán kính đường tròn ngoại tiếp hình vuông ABCD)
Thể tích
(r là bán kính đường tròn nội tiếp hình vuông ABCD)
Theo công thức ta có:
Sxq = 2πrh = 2√3 πr2
Stp = 2πrh + 2πr2 = 2√3 πr2 + 2 πr2 = 2(√3 + 1)πr2 ( đơn vị thể tích)
b) Vtrụ = πR2h = √3 π r3
c) Giả sử trục của hình trụ là O1O2 và A nằm trên đường tròn tâm O1, B nằm trên đường tròn tâm O2; I là trung điểm của O1O2, J là trung điểm cảu AB. Khi đó IJ là đường vuông góc chung của O1O2 và AB. Hạ BB1 vuông góc với đáy, J1 là hình chiếu vuông góc của J xuống đáy.
Ta có là trung điểm của , = IJ.
Theo giả thiết = 300.
do vậy: AB1 = BB1.tan 300 = = r.
Xét tam giác vuông
AB1 = BB1.tan 300 = O1J1A vuông tại J1, ta có: = - .
Vậy khoảng cách giữa AB và O1O2 :
Chọn D.