K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2016

Ta có :
A = a3 +b3 + c3+a2(b+c)+b2(c+a)+c2(a+b)
    = a2(a+b+c) + b2(a+b+c)+c2(a+b+c)
    = (a+b+c)(a2+b2+c2)
V ới a+b+c = 1 thì A = a2+b2+c2
Ta  có a2+b2 ≥2ab
    a2+ c2 ≥ 2ac
    b2 + c2 ≥ 2bc
2(a2 + b2 +c2) ≥ 2(ab + bc + ac)(1)
Cộng thêm vào hai vế của (1) với a2 + b2 + c2
⇔ 3(a2 + b2 + c2) ≥ (a+b+c)2
⇔ 3A ≥ 1/3
⇔ A≥1/3 Dấu “ = ” xảy ra khi a= b =c
Mà a+b+c = 1 nên a =b=c = 1/3
 Do đó A đạt giá trị nhỏ nhất là 1/3khi a =b=c = 1/3

 

7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

26 tháng 3 2015

tach phan nguyên nhí bn

Bài 1 : Cho a, b, c khác 0. Biết x, y, z thỏa mãn:\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)Tính giá trị D = x ^2017 + y^2017 + z^2017Bài 2 : Cho \(\frac{a}{x+y}=\frac{13}{x+2};\frac{169}{\left(x+z\right)^2}=\frac{-27}{\left(z-y\right)\left(2x+y+z\right)}\)Tính A = \(\frac{2a^3-12a^2+17a-2}{a-2}\)bài 3 : Cho a, b, c khác nhau thỏa mãn :\(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}=1\)Chứng minh : 2 phân...
Đọc tiếp

Bài 1 : Cho a, b, c khác 0. Biết x, y, z thỏa mãn:
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Tính giá trị D = x ^2017 + y^2017 + z^2017
Bài 2 : Cho \(\frac{a}{x+y}=\frac{13}{x+2};\frac{169}{\left(x+z\right)^2}=\frac{-27}{\left(z-y\right)\left(2x+y+z\right)}\)
Tính A = \(\frac{2a^3-12a^2+17a-2}{a-2}\)
bài 3 : Cho a, b, c khác nhau thỏa mãn :
\(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}=1\)
Chứng minh : 2 phân thức có giá trị = 1 và 1 phân thức có giá trị = -1
Bài 4 : Cho A = \(\frac{n^3+2n^2-1}{n^3+2n^2+2n+1}\)
a, Rút gọn A
b, Cm : Nếu n thuộc Z thì A tối giản
Bài 5 : Cho n thuộc Z, n nhỏ hơn hoặc = 1
CMR : 1^3 + 2^3 + 3^3 +....+ n^3 = \(\frac{n^2\left(n+1\right)^2}{4}\)
Bài 6 : Cho M =\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
N =\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)
a, Cm : nếu M = 1 thì N = 0
b, Cm : Nếu N = 0 thì có nhất thiết M = 1 ko ?

0
13 tháng 8 2016

1/ Ta có : \(P\left(x\right)=-x^2+13x+2012=-\left(x-\frac{13}{2}\right)^2+\frac{8217}{4}\le\frac{8217}{4}\)

Dấu "=" xảy ra khi x = 13/2

Vậy Max P(x) = 8217/4 tại x = 13/2

2/ Ta có : \(x^3+3xy+y^3=x^3+3xy.1+y^3=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1\)

3/ \(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow ab+bc+ac=-\frac{1}{2}\) \(\Leftrightarrow\left(ab+bc+ac\right)^2=\frac{1}{4}\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)(vì a+b+c=0)

Ta có : \(a^2+b^2+c^2=1\Leftrightarrow\left(a^2+b^2+c^2\right)^2=1\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)

\(\Leftrightarrow a^4+b^4+c^4=1-2\left(a^2b^2+b^2c^2+c^2a^2\right)=1-\frac{2.1}{4}=\frac{1}{2}\)

 

4 tháng 1 2017

a) xác định khi x khác +-1

b)

\(A=\left(\frac{\left(2x+1\right).\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{8}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\right).\frac{\left(x-1\right)}{\left(x+1\right)}\)

\(A=\left(\frac{\left(2x^2+3x+1\right)+8-\left(x^2-2x+1\right)}{\left(x-1\right)\left(x+1\right)}\right).\frac{\left(x-1\right)}{\left(x+1\right)}=\frac{x^2+5x+8}{\left(x-1\right)\left(x+1\right)}.\frac{x-1}{x+1}\)

\(A=\frac{x^2+5x+8}{\left(x+1\right)^2}=1+\frac{3\left(x+1\right)+4}{\left(x+1\right)^2}\)

c)

GTNN \(B=\frac{3y+4}{y^2}\ge-\frac{9}{16}\)

GTNN \(A=\frac{7}{16}\)

1. Tìm số nguyên n sao cho phân thức \(\frac{n+2}{n^2+4}\) có giá trị là số nguyên 2. Cho x + y + z = xy + yz + zx = 0 Tính giá trị của biểu thức B = x100 + y101 + z102 3. Cho các số a, b, c thỏa mãn: a(a - b) + b(b - c) + c(c - a) = 0 Tìm GTNN của biểu thức N = a3 + b3 + c3 - 3abc + 3ab - 3c +5 4. Tìm các số nguyên x, y, z thỏa mãn x - y - z = -3 và x2 - y2 - z2 = 1 5. Cho ba số a, b, c thỏa mãn a2(b - c) + b2(c - a) + c2(a - b) = 0. CMR...
Đọc tiếp

1. Tìm số nguyên n sao cho phân thức \(\frac{n+2}{n^2+4}\) có giá trị là số nguyên
2. Cho x + y + z = xy + yz + zx = 0
Tính giá trị của biểu thức B = x100 + y101 + z102
3. Cho các số a, b, c thỏa mãn: a(a - b) + b(b - c) + c(c - a) = 0
Tìm GTNN của biểu thức N = a3 + b3 + c3 - 3abc + 3ab - 3c +5
4. Tìm các số nguyên x, y, z thỏa mãn x - y - z = -3 và x2 - y2 - z2 = 1
5. Cho ba số a, b, c thỏa mãn a2(b - c) + b2(c - a) + c2(a - b) = 0. CMR trong ba số a, b, c có ít nhất hai số bằng nhau
6. Cho ba số a, b, c khác 0 thỏa mãn đẳng thức \(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\)
Tính giá trị của biểu thức: P = \(\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)
7. Cho a + b = S và ab = P. Hãy biểu diễn theo S và P, các biểu thức sau đây:
a) A = a2 + b2
b) B = a3 + b3
c) C = a4 + b4
8. CMR:
a) a2 ( a + 1) + 2a ( a + 1) chia hết cho 6 với a thuộc Z
b) x2 + 2x + 2 > 0 với x thuộc Z
c) -x2 + 4x - 5 < 0 với x thuộc Z
9. Tìm GTLN của E = -x2 + 2xy - 4y2 + 2x + 10y - 3
10. Tìm các số nguyên x, y thỏa mãn 10x2 + 20y2 + 24xy + 8x -24y + 51 \(\le\) 0
11. Tìm giá trị nguyên của x, y trong đẳng thức: 2x3 + xy = 7
12. Tìm GTNN của biểu thức P =x4 + 2x3 + 3x2 + 2x + 1

0