Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương pháp:
+ Hình nón có chiều cao h và bán kính R thì có thể tích là
Vì hình nón có bán kính R và chiều cao h bằng nhau nên h = R và thể tích hình nón đã cho là
Khi đó H là tâm đường tròn ngoại tiếp tam giác SAB và H cũng là tâm mặt cầu ngoại tiếp hình nón đỉnh S.
Nên bán kính mặt cầu là HS = R nên thể tích hình cầu này
Đáp án A
Theo bài ra, ta có khối nón (N) nội tiếp khối cầu (S).
Giả sử khối nón (N) có đỉnh A, tâm đáy I như hình vẽ bên với h = I A là chiều cao và bán kính đáy r = I K
Tam giác AMK vuông tại K, có I K 2 = I A . I M ⇔ r 2 = h 2 R − h
Suy ra V N = 1 3 π r 2 h = π 3 h 2 2 R − h = π 3 . 2 R h 2 − h 3
Xét hàm số f h = 2 R h 2 − h 3 trên khoảng 0 ; 2 R → max f h = 32 R 3 27
Vậy thể tích cần tính là V = π 3 . 32 R 3 27 = 32 π R 3 81
Đáp án D
Gọi r là bán kính đáy của hình nón đỉnh O.
Ta có r R = h − x h ⇒ r = h − x h R
Chiều cao của khối nón đỉnh O là x
Thể tích của khối nón đỉnh O là:
V = 1 3 π h − x h 2 x = π R 2 6 h 2 h − x h − x 2 x ≤ π R 2 6 h 2 h − x + h − x + 2 x 3 3 = π R 2 6 h 2 2 h 3 3 = 4 π R 2 h 81
⇒ V m a x ⇔ h − x = 2 x ⇔ x = h 3
Đáp án D
Kí hiệu như hình vẽ bên
Chuẩn hóa R = 1 và gọi r,h lầm lượt là bán kính đáy và chiều cao của hình nón
⇒ Thể tích khối nón là V 1 = 1 3 π r 2 h
Tam giác AMK vuông tại K, có:
I K 2 = I M . I A ⇔ r 2 = h 2 R − h = h 2 − h
Để V 1 V 2 lớn nhất ⇔ V 2 V 1 = V C − V 1 V 1 = V C V 1 − 1 nhỏ nhất ⇔ V 1 đạt giá trị lớn nhất
Khi đó V 1 = π 3 h 2 2 − h ≤ π 3 . 32 27 = 32 π 81 (khảo sát hàm số f h = 2 h 2 − h 3 ) )
Vậy tỉ số:
V 1 V 2 = 1 : V C V 1 − 1 = 1 : 4 π 3 : 32 π 81 − 1 = 8 19
Đáp án A.
Kí hiệu như hình vẽ.
Ta thấy I K = r ' là bán kính đáy của hình chóp, A I = h là chiều cao của hình chóp.
Tam giác vuông tại K có IK là đường cao
⇒ I K 2 = A I . I M ⇒ r ' 2 = h . 2 r − h
Ta có V c o h p = 1 3 . π r ' 2 . h = 1 3 . π . h . h . 2 r − h = 4 3 π . h 2 . h 2 2 r − h .
Áp dụng bất đẳng thức Cauchy ta có
h 2 . h 2 . 2 r − h ≤ h 2 + h 2 + 2 r − h 3 27 = 8 r 3 27
⇔ V c h o p ≤ 4 3 π . 8 r 3 27 = 32 81 . π r 3
Dấu bằng xảy ra khi h 2 = 2 r − h ⇔ h = 4 r 3 . Vậy ta chọn A