K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

a) Giả sử A'=(x'; y'). Khi đó \(T_{\overrightarrow{v}}\left(A\right)=A'\Leftrightarrow\left\{{}\begin{matrix}x'=3-1=2\\y'=5+2=7\end{matrix}\right.\)

Do đó: A' = (2;7)

Tương tự B' =(-2;3)

b) Ta có: \(A=T_{\overrightarrow{v}}\left(C\right)\Leftrightarrow C=^T\overrightarrow{-v}\left(A\right)=\left(4;3\right)\)

c) Cách 1. Dùng biểu thức tọa độ của phép tịnh tiến

Gọi M(x;y), M' = \(^T\overrightarrow{v}\) =(x'; y'). Khi đó x' = x-1, y' = y + 2 hay x = x' +1, y= y' - 2. Ta có M ∈ d ⇔ x-2y +3 = 0 ⇔ (x'+1) - 2(y'-2)+3=0 ⇔ x' -2y' +8=0 ⇔ M' ∈ d' có phương trình x-2y+8=0. Vậy \(^T\overrightarrow{v}\) (d) = d'.

Cách 2. Dùng tính chất của phép tịnh tiến

Gọi \(^T\overrightarrow{v}\)(d) =d'. Khi đó d' song song hoặc trùng với d nên phương trình của nó có dạng x-2y+C=0. Lấy một điểm thuộc d chẳng hạn B(-1;1), khi đó \(^T\overrightarrow{v}\) (B) = (-2;3) thuộc d' nên -2 -2.3 +C =0. Từ đó suy ra C = 8.

31 tháng 3 2017

a) Giả sử A'=(x'; y'). Khi đó

(A) = A' ⇔

Do đó: A' = (2;7)

Tương tự B' =(-2;3)

b) Ta có A = (C) ⇔ C= (A) = (4;3)

c)Cách 1. Dùng biểu thức tọa độ của phép tịnh tiến

Gọi M(x;y), M' = =(x'; y'). Khi đó x' = x-1, y' = y + 2 hay x = x' +1, y= y' - 2. Ta có M ∈ d ⇔ x-2y +3 = 0 ⇔ (x'+1) - 2(y'-2)+3=0 ⇔ x' -2y' +8=0 ⇔ M' ∈ d' có phương trình x-2y+8=0. Vậy (d) = d'

Cách 2. Dùng tính chất của phép tịnh tiến

Gọi (d) =d'. Khi đó d' song song hoặc trùng với d nên phương trình của nó có dạng x-2y+C=0. Lấy một điểm thuộc d chẳng hạn B(-1;1), khi đó (B) = (-2;3) thuộc d' nên -2 -2.3 +C =0. Từ đó suy ra C = 8

NV
18 tháng 10 2020

1.

Do \(\overrightarrow{v}\) cùng phương với \(\overrightarrow{u}\) nên \(\overrightarrow{v}=\left(a;a\right)\) với a là số thực khác 0

Chọn \(M\left(0;0\right)\) là 1 điểm thuộc d

Gọi M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in d'\)

\(\left\{{}\begin{matrix}x_{M'}=a+0=a\\y_{M'}=a+0=a\end{matrix}\right.\) \(\Rightarrow M'\left(a;a\right)\)

Thay vào pt d' ta được:

\(a+a-4=0\Rightarrow a=2\)

\(\Rightarrow\overrightarrow{v}=\left(2;2\right)\)

\(\Rightarrow\left|\overrightarrow{v}\right|=2\sqrt{2}\)

NV
18 tháng 10 2020

2.

Gọi \(\overrightarrow{u}=\left(a;b\right)\)

Gọi \(A\left(0;1\right)\) là 1 điểm thuộc d

Gọi A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{u}\Rightarrow A'\in d'\)

Ta có: \(\left\{{}\begin{matrix}x_{A'}=a\\y_{A'}=b+1\end{matrix}\right.\)

Thay tọa độ A' vào pt d' ta được: \(a+b+1-5=0\Leftrightarrow a+b=4\)

Ta có:

\(\left|\overrightarrow{u}\right|=\sqrt{a^2+b^2}\ge\sqrt{\frac{1}{2}\left(a+b\right)^2}=2\sqrt{2}\)

\(\Rightarrow\left|\overrightarrow{u}\right|_{min}=2\sqrt{2}\) khi \(a=b=2\)

24 tháng 8 2016

a) Gọi M' (x₁' ; y₁' ), N' (x₂' ; y₂ ) 

* M' là ảnh của M qua phép F, nên toạ độ M' thoả: 
{x₁' = x₁.cosα – y₁.sinα + a 
{y₁' = x₁.sinα + y₁.cosα + b 

* N' là ảnh của N qua phép F, nên toạ độ N' thoả: 
{x₂' = x₂.cosα – y₂.sinα + a 
{y₂' = x₂.sinα + y₂.cosα + b 

b) * Khoảng cách d giữa M và N là: 
d = MN = √ [(x₂ - x₁)² + (y₂ - y₁)²] 

* Khoảng cách d' giữa M' và N' là: 
d' = M'N' = √ [(x₂' - x₁' )² + (y₂' - y₁' )²] 

= √ {[x₂.cosα – y₂.sinα + a - (x₁.cosα – y₁.sinα + a)]² + [x₂.sinα + y₂.cosα + b - (x₁.sinα + y₁.cosα + b)]²} 

= √ {[cosα(x₂ - x₁) - sinα(y₂ - y₁)]² + [sinα(x₂ - x₁) + cosα(y₂ - y₁)]²} 

= √ [(x₂ - x₁)².(cos²α + sin²α) + (y₂ - y₁)².(cos²α + sin²α)] 

= √ [(x₂ - x₁)² + (y₂ - y₁)²] 

c) Phép F là phép dời hình vì: MN = M'N' = √ [(x₂ - x₁)² + (y₂ - y₁)²] 

d) Khi α = 0 ⇒ cosα = 1, sinα = 0 

Suy ra: 
{x' = x + a 
{y' = y + b 
Đây là biểu thức toạ độ của phép tịnh tiến. Vậy F là phép tịnh tiến

1. Trg mp Oxy, cho đt d: x - y + 4 = 0. Hỏi trg các đt sau đt nào có thể biến thành d qua 1 phép đối xứng tâm? a. 2x + y - 4 = 0 b. x + y - 1 = 0 c. 2x - 2y + 1 = 0 d. 2x + 2y - 3 = 0 2. Cho 2 đt (C): \(x^2+y^2=1\) và (C'): \(\left(x-4\right)^2+\left(y-2\right)^2=1\). Tìm tọa độ tâm đối xứng biến (C) thành (C') 3. Trg mp Oxy cho điểm M (2;1). Hỏi phép dời hình có đc = cách thực hiện liên tiếp phép đối...
Đọc tiếp

1. Trg mp Oxy, cho đt d: x - y + 4 = 0. Hỏi trg các đt sau đt nào có thể biến thành d qua 1 phép đối xứng tâm?

a. 2x + y - 4 = 0 b. x + y - 1 = 0 c. 2x - 2y + 1 = 0 d. 2x + 2y - 3 = 0

2. Cho 2 đt (C): \(x^2+y^2=1\) và (C'): \(\left(x-4\right)^2+\left(y-2\right)^2=1\). Tìm tọa độ tâm đối xứng biến (C) thành (C')

3. Trg mp Oxy cho điểm M (2;1). Hỏi phép dời hình có đc = cách thực hiện liên tiếp phép đối xứng tâm O và phép tịnh tiến the \(\overrightarrow{v}=\left(2;3\right)\) biến điểm M thành điểm nào trg các điểm sau?

a. (1;3) b. (2;0) c. (0;2) d. (4;4)

4. Trg mp Oxy cho đt d có pt: x + y - 2 = 0. Hỏi phép dời hình có đc = cách thực hiện liên tiếp phép đối xứng tâm O và phép tịnh tiến theo vecto \(\overrightarrow{v}=\left(3;2\right)\) biến đt d thành đt nà trg các đt sau?

a. 3x + 3y - 2 = 0 b. x - y + 2 = 0 c. x + y + 2 = 0 d. x + y - 3 = 0

5. Trg mp Oxy cho đt (C) có pt: \(\left(x-1\right)^2+\left(y+2\right)^2=4\). Hỏi phép dời hình có đc = cách thực hiện liên tiếp phép đối cứng qua tâm O và phép tịnh tiến theo vecto \(\overrightarrow{v}=\left(2;3\right)\) biến (C) thành đt nào trg các đt có pt sau?

a. \(x^2+y^2=4\) b. \(\left(x-2\right)^2+\left(y-6\right)^2=4\) c. \(\left(x-2\right)^2+\left(x-3\right)^2=4\) d. Đáp án khác

0
AH
Akai Haruma
Giáo viên
5 tháng 8 2020

Bài 5:

Vecto tịnh tiến là:

$\overrightarrow{AA'}=(x_{A'}-x_A, y_{A'}-y_A)=(2-3, 3-2)=(-1,1)$

$B'$ là ảnh của $B$ qua phép tịnh tiến theo vecto $overrightarrow{AA'}$ nên:

$\overrightarrow{BB'}=\overrightarrow{AA'}$

$\Leftrightarrow (x_{B'}-x_B, y_{B'}-y_B)=(-1,1)$

\(\Leftrightarrow \left\{\begin{matrix} x_{B'}=x_B-1=2-1=1\\ y_{B'}=y_B+1=5+1=6\end{matrix}\right.\)

Vậy tọa độ điểm $B'$ là $(1,6)$

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

Bài 4:

Đường tròn $(C)$ có tâm $I(1;2)$

Đường tròn $(C')$ có tâm $I'(0;3)$

$R=R'=2$

Vecto tịnh tiến biến đường tròn $(C)$ thành $(C')$ là:

$\overrightarrow{v}=\overrightarrow{II'}=(-1,1)$

NV
18 tháng 8 2020

Đường tròn (C) tâm \(I\left(-2;2\right)\) bán kính \(R=3\)

Do d' là ảnh của d qua phép tịnh tiến nên pt d' có dạng \(4x+3y+c=0\)

d' tiếp xúc (C) \(\Leftrightarrow d\left(I;d'\right)=R\)

\(\Leftrightarrow\frac{\left|-8+6+c\right|}{\sqrt{4^2+3^2}}=3\Rightarrow\left|c-2\right|=15\Rightarrow\left[{}\begin{matrix}c=17\\c=-13\end{matrix}\right.\)

Có 2 đường thẳng d': \(\left[{}\begin{matrix}4x+3y+17=0\\4x+3y-13=0\end{matrix}\right.\)

Chọn \(A\left(0;\frac{1}{3}\right)\in d\)

Gọi A' là ảnh của A qua phép tịnh tiến T thì \(A'\left(a;2-a+\frac{1}{3}\right)\Rightarrow A'\left(a;\frac{7}{3}-a\right)\)

Do \(A'\in d'\Rightarrow\left[{}\begin{matrix}4a+3\left(\frac{7}{3}-a\right)+17=0\\4a+3\left(\frac{7}{3}-a\right)-13=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=-24\\a=-6\end{matrix}\right.\)