K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2019

Phương pháp:

+ Gọi C là hình chiếu của A lên mặt đáy chứa đường tròn O ' ; R  D là hình chiếu của B lên mặt đáy chứa đường tròn  (O;R).

+) Tính thể tích lăng trụ đứng O A D . O ' C B , từ đó suy ra thể tích tứ diện OO'AB và đánh giá. 

Cách giải:

Chọn: D

a: Xét tứ giác OBDC có

\(\widehat{OBD}+\widehat{OCD}=180^0\)

Do đó: OBDC là tứ giác nội tiếp

b: Xét ΔEBA và ΔECB có

\(\widehat{E}\) chung

\(\widehat{EAB}=\widehat{EBC}\)

Do đó: ΔEBA\(\sim\)ΔECB

Suy ra: EB/EC=EA/EB

hay \(EB^2=EC\cdot EA\)

12 tháng 4 2017

Đáp án A

20 tháng 11 2017

Đáp án A

Gọi P là hình chiếu của A trên đáy O ' . Khi đó

A B = A P 2 + P B 2 = h 2 + B P 2 = 4 R 2 + P B 2 ≤ 4 R 2 + 4 R 2 = 2 R 2  

Dấu bằng xảy ra ⇔ B P = P Q = 2 R .

2 tháng 4 2017

Lấy điểm A ' ∈ O ' ; B ' ∈ O  sao cho A A ' ; B B '  song song với trục O O ' .

Khi đó ta có lăng trụ đứng O A B ' . O ' A ' B .

Ta có:

Chọn A.

22 tháng 10 2017

Chọn đáp án D.

1 tháng 4 2016

Xét đường thẳng ∆ đi qua điểm O và vuông gó với mặt phẳng (P). Gọi l là đưởng thẳng đi qua M0 ε (C) và l vuông góc với (P). Do đó l // ∆. Quay mặt phẳng (Q) tạo bởi l và ∆ quanh đường thẳng ∆, thì đường thẳng l vạch lên một mặt trụ tròn xoay. Mặt trụ này chứa tất cả những đường thẳng đi qua các điểm M ε (C) và vuông góc với (P). Trục của mặt trụ là ∆ và bán kính của trụ bằng r.

 
13 tháng 3 2017

Chọn A

3 tháng 4 2019

Đáp án B

Kẻ đường sinh AA’, gọi D là điểm đối xứng A’ qua tâm O’.

Kẻ BH vuông góc với A ' D ⇒ B H ⊥ A O   O ' A ' ⇒ V O   O ' A B = 1 3 . B H . S Δ O   O ' A  

  S Δ O   O ' A = 1 2 .   O   O ' . O A = 2 a 2 ⇒ V O   O ' A B = 2 a 2 3   x   B H

Để V O   O ' A B  lớn nhất  ⇔ B H = B O '   H ≡ O ' ⇒ A ' B = 2 a 2

Tam giác AA’B vuông tại A’, có tan   A B A ' ^ = A   A ' A ' B = 2 a 2 a 2 = 1 2  

Vậy A B ; O ' ^ = A B ; A ' B ^ = A B A ' ^ = α ⇒ tan α = 1 2