Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm 2 đường chéo là O
=> Các tam giác OAB và OCD đều vuông cân tại O.
Vẽ các đường cao OH của tam giác OAB và đường cao OK của tam giác OCD.
Vì AD//CD mà OH vuông góc với AB và OK vông góc với CD nên H,O,K thẳng hàng (cùng nằm trên đường thẳng qua O vuông góc AB), và HK chính là chiều cao hình thang.
+) Tam giác OAB vuông cân tại O, đường cao OH => OH=1/2.AB
+) Tam giác OCD vuông cân tại O, đường cao OK=> OK=1/2.CD
---> Chiều cao hình thang: HK=OH+OK=1/2.(AB+CD) ---> đpcm
1) a) Do ABCD là hình thang cân => góc D = góc C ; góc B = góc A
Trong t/g ABC có : góc A = 90 độ => góc D + góc C2 = 90 độ
Trong t/g ABC có AB = BC ( gt ) => t/g ABC cân tại B => góc A1 = góc C1
Ta có góc A = 90 độ + góc A1 = góc D + góc C2 + góc C1 = góc C + góc C = 2C
Mà :
A + B + C + D = 360 độ = 2A + 2C = 4C + 2C = 6C => góc C = 360 độ : 6 = 60 độ
=> góc C = góc D ( = 60 độ ) ; góc A = góc B ( = 120 độ )
nhận xét : Thang cân => 2 đường chéo bằng nhau. Gọi O là giao của 2 đường chéo,
hai đường chéo vuông góc => tam giác OCD vuông cân đỉnh O
vẽ: vẽ tam giác vuông cân COD , trên tia đối của tia OC lấy A , trên tia đối của tia
OD lấy B sao cho OA = OB (< OC nếu AB là đáy nhỏ) => ABCD là thang cân đáy nhỏ AB, dáy lớn CD và có 2 đường chéo vuông góc
*Tính AB + CD:
Từ A và B hạ AH và BK vuông góc CD , H,K thuộc CD . D0 ABCD là thang cân đáy AB, CD
=> DH = CK và AB = HK => AB + CD = AB + DH + HK+KC = HK + CK + HK+KC =2HC
tam giác OCD vuông cân đỉnh O => góc OCD =45 độ => góc ACD =45 độ
lại có tam giác AHC vuông tại H, góc ACD =45 độ => vuông cân => HC = AH = h
=> tổng 2 đáy AB + CD = 2h
kẻ AE//BD , AE giao CD = E
=> AE= BD ( theo nhận xét )
=> AB = ED ( theo nhận xét 2 )
ABCD là hình thang cân
=> AC = BD ( t/c hình thang cân )
mà AE = BD ( cmt )
Xét hình thang ABCD có các đường cao AH và BK. Từ A kẻ đường thẳng song song với BD cắt CD ở E Þ AB = ED.
Chứng minh A C H ^ = 45 0 . Do DEAC vuông cân ở A nên A H = C H = E H = A B + C D 2