Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Thiết diện cắt qua trục là tam giác đều suy ra l = 2 r = 2 a ⇒ S x q = π r l = 2 π a 2 .
Áp dụng BĐT tam giác ta có:
a+b>c =>c-a<b =>c2-2ac+a2<b2
a+c>b =>b-c <a =>b2-2bc+c2<a2
b+c>a =>a-b<c =>a2-2ab+b2<c2
Suy ra: c2-2ac+a2+b2-2bc+c2+a2-2ab+b2<a2+b2+c2
<=>-2.(ab+bc+ca)+2.(a2+b2+c2)<a2+b2+c2
<=>-2(ab+bc+ca)<-(a2+b2+c2)
<=>2.(ab+bc+ca)<a2+b2+c2
Đáp án A
Phương pháp:
+) Thiết diện qua trục của hình nón luôn là tam giác cân tại đỉnh của hình nón.
+) Diện tích xung quanh của hình nón bán kính Rvà đường sinh l là: S = π R l
Cách giải:
Giả sử thiết diện qua trục của hình nón là tam giác ABC có B A C = 60 0
⇒ Δ A B C là tam giác đều.
Gọi O là trung điểm của B C ⇒ O là tâm của đường tròn đáy.
⇒ B C = 2. O A = 2 R = 2 a ⇒ l = A B = A C = B C = 2 a ⇒ S x q = π R l = π . a .2 a = 2 π a 2
Đáp án B.
Đường kính đáy d = 2 R = 2 a 2 .
Do góc ở đỉnh bằng 60 0 nên thiết diện qua trục là tam giác đều.
Độ dài đường sinh là: l = d = 2 a 2
Diện tích xung quanh hình nón là:
S x q = π R l = π . a 2 .2 a 2 = 4 π a 2 .
vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)
vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3
ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2
vậy ta tìm đc a và b
Đáp án là B