K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2017

Chọn đáp án C.

Gọi P là trung điểm cạnh A'D' khi đó BD//NP.

Khi đó góc giữa 

Vì ABCD.A'B'C'D' là hình lập phương cạnh a nên 

Suy ra 

Do đó tam giác MNP đều 

22 tháng 5 2017

Ôn tập chương III

Ôn tập chương III

18 tháng 12 2016

Gọi H là hình chiếu vuông góc của A' trên mặt phẳng (ABCD)

Kẻ HN vuông góc với AB tại N, HM vuông góc với AD tại M

Ta cần tìm chiều cao h=A'H của hình hộp

Dễ dàng chứng minh \(\widehat{A'NH}=60^0\)\(\widehat{A'MH}=45^0\)

Xét tam giác vuông NHA' và MHB' có

\(NH=\frac{HA'}{tan\widehat{HNA'}}=\frac{h}{\sqrt{3}}\)\(MH=\frac{HA'}{tan\widehat{HMA'}}=h\)

Xét hình vuông AMHN có \(AH=\sqrt{HN^2+HM^2}=\frac{2h}{\sqrt{3}}\)

Xét tam giác vuông AHA' có \(AH^2+A'H^2=A'A^2\Leftrightarrow h^2+\frac{4}{3}h^2=1\Leftrightarrow h=\sqrt{\frac{3}{7}}\)

Vậy thể tích hình hộp là: \(V=h.\sqrt{3}.\sqrt{7}=\sqrt{\frac{3}{7}}.\sqrt{3}\sqrt{7}=3\)

30 tháng 6 2016

M,N lần lượt là trung điểm BC,A'B

31 tháng 3 2016

S A B C D M N H K

Thế tích của khối chóp S.CDNM :

\(S_{CDNM}=S_{ABCD}-S_{AMN}-SBC\)

             \(=AB^2-\frac{1}{2}AM.AN-\frac{1}{2}BC.BM\)

             \(=a^2-\frac{a^2}{8}-\frac{a^2}{4}=\frac{5a^2}{8}\)

Vậy \(V_{SCDNM}=\frac{1}{3}S_{CDNM.SH}=\frac{5\sqrt{3}a^2}{24}\)

Khoảng cách giữa 2 đường thẳng DM và SC

\(\Delta ADM=\Delta DCN\Rightarrow\widehat{ADM}=\widehat{DCN}\Rightarrow DM\perp CN\) 

Kết hợp với điều kiện :

\(DM\perp SH\Rightarrow DM\perp\left(SHC\right)\)

Hạ \(HK\perp SC\left(K\in SC\right)\Rightarrow HK\)là đoạn vuông góc chung của DM và SC

Do đó :

\(d\left(DM,SC\right)=HK\)

Ta có :

\(\begin{cases}HC=\frac{CD^2}{CN}=\frac{2a}{\sqrt{5}}\\HK=\frac{SH.HC}{\sqrt{SH^2+HC^2}}=\frac{2\sqrt{3}a}{\sqrt{19}}\end{cases}\)

\(\Rightarrow d\left(DM,SC\right)=\frac{2\sqrt{3}a}{\sqrt{19}}\)

19 tháng 4 2016

cậu ơi, hướng dẫn giúp tớ bài tương tự này với: cho hình chóp S.ABCD có ABCD là hình vuông cạnh a, góc giữa SD và mặt phẳng ABCD là 45 độ, SA vuông góc (ABCD). M là trung điểm BC. Tính khoảng cách DM và SC

cảm ơn c nhiều nhiều.

23 tháng 5 2017

Ôn tập cuối năm môn hình học 12

7 tháng 4 2016

B A D C B1 C1 A1 F K E H

Gọi (\(\alpha\)) là mặt phẳng chứa DE và song song với \(A_1F\) thì khoảng cách cần tính bằng khoảng cách từ F đến ( \(\alpha\))

Theo giả thiết suy ra lăng trụ đã cho là lăng trụ đứng có đáy là tam giác đều cạnh a

Gọi K là trung điểm của \(FC_1\) thì \(EK\)//\(A_1F\)//AD, suy ra (\(\alpha\)\(\equiv\left(ADKE\right)\)

Ta có \(A_1F\perp B_1C_1\Rightarrow A_1F\perp\left(BCC_1B_1\right)\) \(\Rightarrow EK\perp\left(BCC_1B_1\right)\)

Gọi H là hình chiếu vuông góc của F lên đường thẳng DK thì \(FH\perp\left(ADKE\right)\) suy ra FH là khoảng cách cần tính 

Trong tam giác vuông DKF, ta có :

\(\frac{1}{FH^2}=\frac{1}{FD^2}+\frac{1}{FK^2}=\frac{1}{\left(\frac{a}{4}\right)^2}\Rightarrow FH=\frac{a}{\sqrt{17}}\)

5 tháng 10 2017

a