K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có tứ giác AA’CC’ là hình bình hành suy ra A’C cắt AC’ tại trung điểm I của mỗi đường.

Do đó IH // CB′ ( đường trung bình của tam giác CB’A’)

Mặt khác IH ⊂ (AHC′) nên CB′ // (AHC′)

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

suy ra, ⇒ A là điểm chung của (AB’C’) và (ABC)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Nên (AB′C′) ∩ (ABC) = Ax

Và Ax // BC // B′C′

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

2 tháng 2 2016

(a)đi pua cc" và song song với 2 đt AH,CB'

31 tháng 3 2017

a) Do MM' lần lượt là trung điểm của BC và B'C' nên M'M//BB'//CC'. Vì vậy MM'//AA'.
Vì vậy tứ giác A'M'MA là hình bình hành. Suy ra: AM//A'M'.
b) Trong mp (AA'M'M), ta có: MA' ∩ AM' = K.
     Do \(K\in A'M\)  và \(A'M\in\left(AB'C'\right)\) nên K (AB'C').

c) Có \(O=AB'\cap A'B\) nên \(O\in\left(AB'C'\right)\cap\left(BA'C'\right)\).
 Suy ra: \(d\equiv CO'\).

d) Trong (AB'C'): C'O ∩ AM' = G vì vậy G ( AMM') . Mà O, M' lần lượt là trung điểm AB' và B'C' nên G là trọng tâm của tam giác AB'C'.

 

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

26 tháng 5 2017

Hỏi đáp Toán

9 tháng 6 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có II′ // BB′ và II’ = BB’

Mặt khác AA′ // BB′ và AA’ = BB’ nên : AA′ // II′ và AA’ = II’

⇒ AA’II’ là hình bình hành.

⇒ AI // A′I′

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ A ∈ (AB′C′) ∩ (AA′I′I)

Tương tự :

Giải sách bài tập Toán 11 | Giải sbt Toán 11

I′ ∈ (AB′C′) ∩ (AA′I′I) ⇒ (AB′C′) ∩ (AA′I′I) = AI′

Đặt AI′ ∩ A′I = E. Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy E là giao điểm của AI’ và mặt phẳng (AB’C’)

c) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Tương tự:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy (AB′C′) ∩ (A′BC) = MN

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

a: Xét ΔAMB có ME là đường phân giác

nên AE/EB=AM/MB=AM/MC(4)

XétΔAMC có MD là đường phân giác

nên AD/DC=AM/MC(5)

Từ (4) và (5) suy ra AE/EB=AD/DC

b: Xét ΔABC có 

AE/EB=AD/DC

nên ED//BC

Xét ΔABM có EI//BM

nên EI/BM=AE/AB(1)

Xét ΔACM có ID//MC

nên ID/MC=AD/AC(2)

Xét ΔABC có 

ED//BC

nên AE/AB=AD/AC(3)

Từ (1), (2) và (3) suy ra EI/BM=DI/MC

mà BM=CM

nên EI=DI

hay I là trung điểm của ED

NV
20 tháng 4 2023

Gọi D, E, F lần lượt là trung điểm A'A, BC và MN

\(\left\{{}\begin{matrix}MN||B'C'\\DN||AB'\end{matrix}\right.\) (đường trung bình tam giác) \(\Rightarrow\left(AB'C'\right)||\left(DNM\right)\)

\(\Rightarrow\) Góc giữa (AB'C') bằng góc giữa (DNM) và (BCMN)

\(MN\perp A'F\) (A'MN là tam giác đều), và \(A'A\perp\left(A'B'C'\right)\Rightarrow A'A\perp MN\)

\(\Rightarrow MN\perp\left(A'AEF\right)\) \(\Rightarrow\)  góc giữa (DNM) và (BCMN) là \(\widehat{DFE}\) nếu nó là góc nhọn và \(180^0-\widehat{DFE}\) nếu nó là góc tù

\(MN=\dfrac{1}{2}B'C'=\sqrt{3}\Rightarrow A'F=\dfrac{MN\sqrt{3}}{2}=\dfrac{3}{2}\) (trung tuyến tam giác đều)

\(\Rightarrow DF=\sqrt{A'F^2+A'D^2}=\dfrac{\sqrt{13}}{2}\)

\(AE=\dfrac{AB\sqrt{3}}{2}=3\Rightarrow DE=\sqrt{AD^2+AE^2}=\sqrt{10}\)

Gọi G là trung điểm AE \(\Rightarrow FG\perp\left(ABC\right)\Rightarrow\left\{{}\begin{matrix}FG=A'A=2\\GE=\dfrac{1}{2}AE=\dfrac{3}{2}\end{matrix}\right.\)

\(EF=\sqrt{FG^2+EG^2}=\dfrac{5}{2}\)

Áp dụng định lý hàm cos:

\(cos\widehat{DFE}=\dfrac{DF^2+EF^2-DE^2}{2DF.EF}=...\Rightarrow\widehat{DFE}=...\)

NV
20 tháng 4 2023

loading...