K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

3 tháng 5 2018

Đáp án B

15 tháng 6 2019

17 tháng 7 2018

Đáp án D

Gọi P là trung điểm cạnh BC

Tam giác MPN vuông tại P có

26 tháng 5 2016

s B A D C O M

 

Hình chiếu vuông góc của SA lên (ABCD) là AO nên góc giữa SA và (ABCD) là \(\widehat{SAO}\)

Xét \(\Delta SAO\left(\perp O\right)\) ta có : \(SA=\frac{a\sqrt{5}}{2};AO=\frac{1}{2}AC=\frac{1}{2}a\sqrt{2}\)

\(\cos\widehat{SAO}=\frac{AO}{SA}=\frac{\frac{a\sqrt{2}}{2}}{\frac{a\sqrt{5}}{2}}=\frac{\sqrt{10}}{5}\)

c. Xét \(\Delta SOC\) có : \(\begin{cases}SO\perp BD\\OC\perp BD\end{cases}\) nên \(\left(SOC\right)\perp BD\) mà \(OM\subset\left(SOC\right)\Rightarrow OM\perp BD\)

xét : \(\left(MBD\right)\cap\left(ABCD\right)=BD\)

Trong (MBD) có \(OM\perp BD\)

Trong (ABCD) có \(OC\perp BD\)

Vậy góc giữa (MBD) và (ABCD) là \(\widehat{MOC}\)

Ta có : \(\Delta SAC\) đồng dạng với \(\Delta MOC\) (vì \(CM=\frac{1}{2}CS;CO=\frac{1}{2}CA\))nên \(\widehat{MOC}=\widehat{SAC}\)

22 tháng 6 2021

A B C D S O I J H

a) Hình chóp đều S.ABCD có O là tâm đáy, suy ra \(SO\perp\left(ABCD\right)\Rightarrow CB\perp SO\)

Hình vuông ABCD có I,J lần lượt là trung điểm BC,AD, suy ra \(CB\perp IJ\)

Vậy \(CB\perp\left(SIJ\right)\)hay \(\left(SBC\right)\perp\left(SIJ\right).\)

b) Ta có: \(OC=\frac{CD}{\sqrt{2}}=a;SC=2a\Rightarrow\frac{OC}{SC}=\frac{1}{2}\)

\(\hept{\begin{cases}SO\perp\left(ABCD\right)\\C\in\left(ABCD\right)\end{cases}}\Rightarrow\left(SC,ABCD\right)=\widehat{SCO}=arc\cos\left(\frac{OC}{SC}\right)=60^0\)(Vì \(\widehat{SCO}< 90^0\))

b) Lấy H thuộc SI sao cho JH vuông góc SI

\(\hept{\begin{cases}AD||BC\\BC\subset\left(SBC\right)\end{cases}}\Rightarrow AD||\left(SBC\right)\)

\(\Rightarrow d\left(AD,SB\right)=d\left(AD,SBC\right)=d\left(J,SBC\right)\)

Ta thấy: SI là giao tuyến của (SIJ) và (SBC), mà \(\hept{\begin{cases}J\in\left(SIJ\right)\\JH\perp SI\end{cases}\left(H\in SI\right)}\)nên \(JH\perp\left(SBC\right)\)

Ta có \(SO=a\sqrt{3},OI=a\frac{\sqrt{2}}{2}\Rightarrow\cos\widehat{OSI}=\frac{SO}{\sqrt{SO^2+OI^2}}=\frac{\sqrt{42}}{7}\)

Suy ra \(d\left(J,SBC\right)=JH=IJ.\cos\widehat{HJI}=IJ.\cos\widehat{OSI}=\frac{\sqrt{42}a}{7}\)

Vậy \(d\left(AD,SB\right)=\frac{\sqrt{42}a}{7}.\)

22 tháng 6 2021

Chữa câu c:

\(d\left(AD,SB\right)=JH=IJ.\cos\widehat{HJI}=a\sqrt{2}.\frac{\sqrt{42}}{7}=\frac{2\sqrt{21}a}{7}\)

16 tháng 1 2017

Gọi giao điểm của BO và AC là J;  giao điểm của CO và AB là I.

Kẻ AK vuông góc CC’.

Vì đường thẳng CC’ vuông góc mp(ABK ) nên BK vuông góc CC’.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án C

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

9 tháng 11 2017

Đáp án A.

Gọi H là trung điểm của AB